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Resolution of overlapping spectra by curve-fitting
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Abstract

In this paper we present a novel method of curve-fitting based on Gaussian function, which is used to resolve the overlapping peaks. Correctly
choosing the minimum separable peak–peak interval (MSI) is crucial for this type of problem. We propose a method that chooses appropriate
MSI by analyzing the curve-fitting error changes with the MSI. The resolution of several kinds of overlapping peaks with computer-simulated
noise has been performed and discussed in details. This method has been used for resolving of the UV–vis overlapping spectrum. The results
are satisfactory and clearly show the effectiveness of the proposed method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Resolving overlapping peaks is an important yet difficult
and challenging problem for analytical chemists. Besides pre-
venting the overlap by chemical and instrumental methods,
the mathematical mean has become an important tool to an-
alyze the overlapping spectra. As for the algebraic methods,
the most conventional approach is based on curve-fitting. The
principle of curve-fitting is to represent peaks by certain an-
alytical functions with some undetermined parameters and
optimize these parameters to approximate the actual curve.
Nevertheless, the achievement of a good representative fit
requires the knowledge of the number of component bands,
their positions, shapes and widths. Fleissner et al.[1] and
Maddams and Mead[2] applied the second or fourth deriva-
tive in determining the number and the position of overlap-
ping peaks. Fourier self-deconvolution (FSD) is an alternative
method to estimate the parameters in curve-fitting[3,4]. Nat-
ural computation[5,6]was also applied to peak detection. Ap-
plying the wavelet technique to resolve overlapping signals
is now an active field[7–9]. However, for severe overlapping
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cases the non-uniqueness problem becomes dominating. This
has not been sufficiently addressed by the existing methods,
therefore accurately locating and identifying the Gaussian
peaks in such circumstances is still a difficult task.

In this paper, we introduce the theory of curve-fitting
based on the Gaussian model to resolve overlapping spec-
tra firstly. We then propose an algorithm based on both the
minimum separable peak–peak interval and the curve-fitting
error. Lastly, we use both simulated spectral data and ex-
perimental UV–vis spectra to verify the performance of the
proposed method.

2. Theory

2.1. Mathematical model

Generally, the individual peak can be described by the
Gaussian distribution function, which contains three param-
eters indicating the peak height, width and position, expressed
as following:

gµ,σµ (λ) = kµ√
2πσµ

e−(λ−µ)2/2σ2
µ = Aµ e−(λ−µ)2/2σ2

µ (1)
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whereµ andσµ are the peak position and the standard de-
viation (width), andAµ is the peak height. The fitting curve
can be represented as:

f (λ) =
∫ b

a

gµ,σµ (λ) dµ =
∫ b

a

Aµ e−(λ−µ)2/2σ2
µ dµ (2)

In practical computation, since the signal to be analyzed
is often discrete sampling data, the discrete form of Eq.(1)
is used:

gi,σi (j) = ki√
2πσi

e−(j−i)2/2σ2
i = Ai e−(j−i)2/2σ2

i (3)

The fitting curve can be expressed as:

f (j) =
N∑

i=1

gi,σi (j) =
N∑

i=1

Ai e−(j−i)2/2σ2
i ,

(i, j = 1, 2, . . . , N) (4)

For the route of curve-fitting, the goodness of fit criterion is
defined as:

E = 1

2

N∑
j=1

[f (j) − f ∗(j)]2 (5)

where f* (j) and f(j) are the original dataset and the fitting
dataset, respectively. The parametersAi andσ i (i = 1,.2,. . .,
N) are determined by minimizing the mean-square errorE.
The initialization ofAi ,σ i (i = 1, 2,. . .,N) can affect algorithm
convergence. If they are stationed in a flat region of the error
surface the convergence can be extremely slow. Typically,Ai
andσ i (i = 1, 2,. . ., N) are initialized with non-negative ran-
dom numbers near zero. In this paper, the initialAi , σ i (i = 1,
2,. . ., N) are randomly chosen within (0, 1). We also refer to
the initialAi , σ i (i = 1, 2,. . ., N) as the initial conditions.

According to Eqs.(4) and (5), we can deduce that:

∂E

∂Ai

=
N∑

j=1

[f (j) − f ∗(j)] e−(j−i)2/2σ2
i (6)

and

∂E

∂σi

=
N∑

j=1

[f (j) − f ∗(j)] e−(j−i)2/2σ2
i Ai

(j − i)2

σ3
i

(7)

In order to improve the stability of the iterative process,
an inertia factorα is introduced into the adjustment equations
as follows:

�Ai(t + 1) = −pA

∂E

∂Ai

+ αA�Ai(t) (8)

and

�σi(t + 1) = −pσ

∂E

∂σi

+ ασ�σi(t) (9)

where�Ai(t) and�Ai(t+ 1) are the adjustment ofAi at the
timet andt+ 1,pA andαA the adjust step and the inertia factor

of Ai , �σ i(t) and�σ i(t+ 1) the adjustment ofσ i at the time
t andt+ 1,pσ andασ the adjust step and the inertia factor of
σ i . Selection ofp andα can be difficult. The same problem
appears in the training for the neural network[10]. The ad-
just stepp determines the size of the adjustment each time.
A large adjust stepp will accelerate convergence. However,
this may cause the search to oscillate on the error surface
and never converge, thus increasing the risk of overshooting
a near-optimal solution. In contrast, a small adjust step will
converge slowly and may also result in falling into some lo-
cal minima other than a global minimum. The inertia factor
α determines the change rate ofp to help the search escape
local minima and reduce the likelihood of search instabil-
ity. In this paper, we choosep= 0.1–0.6 andα = 0.03–0.3.
The simulation experiments show such a choice is
appropriate.

The proposed approach can be applied to the signals,
whose individual peak can be described by the Gaussian or
Lorentzian function.

2.2. Non-uniqueness of the curve-fitting

For any original signalf* (j) (j = 1, 2,. . ., N), it can always
be fitted with:

f (j) =
N∑

i=1

gi,σ(j) =
N∑

i=1

f ∗(i) e−(j−i)2/2σ2

whereσ → 0 andσ �= 0. Then

e−(j−i)2/2σ2 =
{

0, i �= j

1, i = j

and obviously,f(j) = f* (j).
This shows that any signal may be fitted by different

groups of Gaussian peaks under an acceptable error. In other
words, curve-fitting is mathematically non-unique. One of the
main drawbacks involved is that as the bands become more
overlapped or the number of overlapping bands increases, the
problem becomes progressively more ill-conditioned. Even
so, it is still possible to carry on curve-fitting effectively with
some knowledge that includes the characteristic of material
and the resolution ratio of spectra, etc. A part of this knowl-
edge is related to the characteristic absorption band, the real
peak–peak interval or peaks intensity ratio of the spectrum,
and so on. In the following algorithm, we try to resolve over-
lapping spectra using the theory mentioned above.

3. Algorithms

First we define two terms: the minimum real peak–peak
interval (MRI) R, which is the minimum value in all inter-
vals of adjacent peaks,R= min(λi+1 − λi)i=1, 2,. . ., N−1; and
the minimum separable peak–peak interval (MSI)r, which is
the minimum interval between the peaks that can be separated
by the present procedure. The proposed method includes two
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