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a b s t r a c t

Motivated by physical applications we consider a mathematical model describing the
evaporation process in solid–liquid–gas systems with two moving boundaries of the
phase transition. An alkali metal generator with a working substance in the form
of an intermetallic compound and the evaporation of a volatile component into a
vacuum is considered. Explicit analytical solutions of the problem under consideration
are constructed in three different geometries of the process. We demonstrate that the
evaporation boundary moves much more slowly than the dissolution boundary and the
liquid layer thickness increases with time. The role of the evaporation coefficient on the
evaporation stream and the nonlinear dynamics of the process is studied. An approach
developed in the present study canbeused for solutions ofmathematicalmodels describing
similar Stefan-type processes met in other areas of applied physics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The seemingly trivial problemof the time evolution of a phase transition boundary comes under the rubric of the so-called
Stefan problems. Stefan published theoretical and experimental papers on the theory of heat andmass transfer in fluids [1,2],
on the growth of sea ice [3], and on evaporation processes [4]. In these works Stefan describes mathematical models
for physical problems, containing an unknown time-dependent interface position. Since Stefan gives the first detailed
analysis of these problems, moving boundary problems are called Stefan-type problems. Therefore, their rich nonlinear
behavior, has attracted a substantial research interest in the field of transport phenomena (e.g. Refs. [5–7]), and their
ubiquity in fields ranging from geophysics to material physics has stimulated a continual rediscovery of Stefans work.
Generally speaking, explicit analytical solutions of the Stefan-type problems on evaporation are unknown due to the fact of
nonlinearities in the boundary conditions imposed at the time-dependent phase transition interfaces (see, among others,
steady-state approximations [8] or numerical schemes developed for unsteady-state conditions [9]). The present paper
develops analytical approaches for the solution of Stefan-type evaporation problems met in different areas of applied
physics.
Solid–gas phase transitions in the presence of a thin liquid layer produced by a melting process occur in many

engineering, environmental, and technological systems, including metallurgy, geophysics, crystal growth, electronics,
applied physics, etc. In many applications, the evaporation processes from alloys containing a volatile component form the
basis of a large number of technological processes such as the deposition ofmetallic films [10] or the refining ofmetals [11]. In
many cases, the evaporation and deposition procedures in alloys are complicated by the diffusion mechanism: the decrease
of the concentration of the volatile component leads to phase changes, which modifies the evaporation and melting rates.
This situation is typical, e.g., for intermetallic generators of the alkali metals. These metals are widely used in the deposition
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of the photocathode materials (Cs3Sb, Na2KSb, etc.) and in the treatment of the ready metal (W, Ni, etc.) or semiconductor
(Si, GaAs, etc.) surfaces by vapour [12]. The thermal disintegration in a vacuum of a solid or melted intermetallics containing
alkali components has been cited as an example of the alkali metal vapour production [12]

AnMem → Ax + An−xMem −1H,

where 0 < x ≤ n, A is an alkali metal, Me is an element, the vapour pressure of which under the deposition temperature
is many times lower than the vapour pressure of the component A, and 1H is the thermal effect of the reaction. The
intermetallic compound AnMem (e.g., synthesised by the ampoule-vacuum method [13]) can be prepared as a compact
ingot, and the second component, Me, can be selected so that partial pressures of vapour of the components PA and PMe
would satisfy the condition PMe/PA ∼ ε (ε ∼ 10−8 according to the estimates given by Chuntonov and Mansurov [12,14]
and ε ∼ 10−6 according to the experiments discussed by Chuntonov and Setina [15]). The aim of the present paper is to
develop the theory of phase transitions for these materials when they are heated up to the temperatures of deposition.

2. The model

Let us consider the model of a direct-fired generator, the working substance of which represents a wire [16] or spherical
granules [12] of the composition AnMem covered by a thin shell of the second component Me. For the sake of simplicity, the
one-dimensional model of the process under consideration related to Cartesian coordinates will be our initial concern. The
main principles of the problem in the given case remain the same and the theoretical analysis becomes easier.
The generator, the scheme of which is demonstrated in Fig. 1, is filled with an intermetallic compound AnMem. This

compound is isolated by a thin layer of the Me component from the outer atmosphere. This layer is firmly kept on the
surface by adhesion forces of the solid phase AnMem for the phase diagram of system A − Me shown in Fig. 1. The thin
layer in thermodynamic equilibrium with the AnMem crystals protects atoms of A from evaporation in the stage of storage
at the temperature preventing heating (Th in Fig. 1). Increasing the temperature up to the working temperature T ≥ Tw
increases the value C ≥ C0 and, as a result, a stream of evaporation of J arises. This process leads to a concentration gradient
in the liquid layer which reaches the liquid–solid boundary (the surface of AnMem crystals). As a result, a decrease in the
concentration causes a dissolution of the liquid–solid boundary. Thus, the process under consideration is divided into three
regions (solid, liquid and gas layers) by two moving phase transition boundaries, the evaporation boundary gas–liquid and
the dissolution boundary, liquid–solid. Themathematical models of such processes originating from the frontal formulation
of the Stefan problem [6] represent nonstationary sets on nonlinear equations and boundary conditions in partial derivatives
withmoving boundaries of the phase-transition regions. As is known, there are no generalmethods of solving suchproblems.
This work is devoted to the the derivation of explicit solutions of the process of isothermal evaporation in the system under
consideration under the assumption that the transfer of the volatile component is carried out by way of molecular diffusion.
Initially, at time t = 0, the region −RGL(0) < r < 0 is filled with the liquid at a concentration of CS/k (k � 1 is the

equilibrium partition coefficient determined from the phase diagram; see, among others, [17]), whereas the region r > 0 is
occupied by the solidmaterial at a concentration of CS (Fig. 2). At t > 0, the evaporation process of the component A into the
gas phase begins from the gas–liquid boundary r = RGL(t). We shall now consider the case PMe � PA (or PMe → 0) so that
the evaporation stream J can be treated as a linear function of the concentration of the A component on the phase transition
boundary r = RGL(t) in the form J = αC , where α = aKMB/ρ(2πMART )1/2 is the reduced evaporation coefficient [14] (a is
the evaporation coefficient, K is the Henry constant, ρ is the mean density of the liquid layer, R is the gas constant,MA and
MB are the molecular weights of the components A and Me). This quantity is weakly dependent on the concentration [12],
which we shall first consider to be constant.
The mass balance conditions at the moving evaporation and dissolution boundaries can be written in a standard form by

analogy with the Stefan problem of binary melt solidification (see, among others, [18])

CS
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dRLS
dt
+ D

∂C
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= CS

dRLS
dt

, r = RLS(t), (1)

J = αC = ρ
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C
dRGL
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where D is the coefficient of diffusion of the component A in the liquid layer.
We consider the phase transition interface r = RLS at equilibrium. In this case, we have the following condition at the

boundary of dissolution

C = CS/k, r = RLS(t). (4)

It is of interest to estimate the concentration relaxation time tC and the characteristic time tLS of the movement of the
liquid–solid boundary (e.g., asymptotic solutions obtained by Chuntonov and Mansurov [12,14] show that the evaporation
boundary moves much more slowly than the dissolution boundary). These times can be written in the form

tC ∼ R2LS/D, tLS ∼ RLS/(dRLS/dt).
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