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• Studied how generalized ZDS competes in well-mixed and structured populations.
• Presented expected payoffs for ZDS against AllC, AllD, TFT, and WSLS strategies.
• For finite and well-mixed populations, explained phase diagrams analytically.
• For square lattice, explained results by payoff band theory qualitatively.
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a b s t r a c t

We study the competition and strategy selections between a class of generalized zero-
determinant (ZD) strategies and the classic strategies of always cooperate (AllC), always
defect (AllD), tit-for-tat (TFT), andwin-stay-lose-shift (WSLS) strategies in an iterated pris-
oner’s dilemma comprehensively. Using the generalized ZD strategy, a player could get a
payoff that is χ (χ > 1) times that of his opponent’s, when the payoff is measured with re-
spect to a referencing baseline parameterized by 0 ≤ σ ≤ 1. Varying σ gives ZD strategies
of tunable generosity from the extortionate-like ZD strategy for σ ≪ 1 to the compliance-
like strategy at σ ≈ 1. Expected payoffs when ZD strategy competes with each one of
the classic strategies are presented. Strategy evolution based on adopting the strategy of a
better performing neighbor is studied in a well-mixed population of finite size and a pop-
ulation on a square lattice. Depending on the parameters, extortion-like strategies may
not be evolutionarily stable despite a positive surplus over cooperative strategies, while
extortion-like strategies may dominate or coexist with other strategies that tend to defect
despite a negative surplus. The dependence of the equilibrium fraction of ZD strategy play-
ers on themodel parameters in a well-mixed population can be understood analytically by
comparing the average payoffs to the competing strategies. On a square lattice, the success
of the ZD strategy can be qualitatively understood by focusing on the relative alignments of
the finite number of payoff values that the two competing strategies could attain when the
spatial structure is imposed. ZD strategies with properly chosen generosity could be more
successful in evolutionary competing systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of cooperation or altruism among egoists has long been a fascinating and important research topic [1–5].
The Prisoner’s Dilemma (PD) provides a paradigm for studying possible cooperative behavior among selfish players in
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evolutionary games. The PD is set up as a two-player game in which each player has two possible actions: to cooperate
(C) or to defect (D) (not to cooperate). The payoff to each player depends on the actions of the two players. If they cooperate,
i.e. situation CC indicating the actions of the first and second players, each gets a reward payoff R. If both players use D,
i.e., situation DD, each gets a punishment payoff P . When one player chooses C and the other chooses D, i.e., situations CD
and DC , the cooperator gets a payoff S and the defector gets T . In PD, the payoffs are ordered as T > R > P > S [6], with
2R > T + S. For a single-round PD, using D is the rational choice as T > R and P > S. Referring to the four situations in the
order of (CC , CD, DC , DD), the payoffs can be represented by a vector S1 = (R, S, T , P) for the first player and another vector
S2 = (R, T , S, P) for the second player.

If the players are to play the game repeatedly, however, cooperation may be possible. In 1980s, Axelrod [1,2] established
the Iterated PD (IPD) in which players compete in infinite rounds of PD. Players in IPD need to consider the strategy for
deciding on C or D action in the forthcoming round based on the competing outcomes in the past rounds. It is common to
assume that the players only remember the outcomes in the last round, i.e., a memory-one game [7–13]. As the possible
outcomes in a memory-one IPD are the four situations (CC , CD, DC , DD), and the corresponding reaction strategies can
be described by an array of four probabilities (pCC , pCD, pDC , pDD), each giving the probability of taking the C action if the
outcome of themost recent round is that labeled by the subscripts. Therefore, the players have access to a large strategy pool
described by the set of (pCC , pCD, pDC , pDD). Early studies showed that the Tit-for-Tat (TFT) strategy described by (1, 0, 1, 0),
which amounts to imitate the opponent’s latest action and thus retaliate immediately to any harsh actionD of the opponent,
is a highly successful strategy [1]. However, later studies showed that TFT is not evolutionarily stable [14]. It cannot dominate
the AllC strategy of always playing C as described by (1, 1, 1, 1) [15] and it may coexist with the AllD strategy of always
playing D as described by (0, 0, 0, 0) when players compete on a lattice [16,17]. A more generous TFT strategy in which
there is a certain probability of forgiving the opponent’s unfriendly D action was shown to dominate in the heterogeneous
population [18] or in the spatial lattice [19]. Furthermore, Nowak and Sigmund showed that theWSLS strategy of win-stay-
lose-shift as described by (1, 0, 0, 1), where a player switches action after encountering a D-action opponent, outperforms
TFT in the IPD [20]. However, WSLS performs poorly against AllD as it will switch strategy every round and thus will be
continually exploited by the AllD opponent.

There has beenmuchwork in the past two years related to a class of zero-determinant (ZD) strategies in the strategy pool
of memory-one game after their proposal by Press and Dyson [10]. The ZD strategy has the property of enforcing a linear
relation between the payoffs of a player and his opponent in IPD. Thus, the player using the ZD strategy can unilaterally
set his opponent’s payoffs. More interestingly, there exist extortionate ZD strategies which could let the extortioner get
a higher surplus than that of his opponent, when the payoff is measured relative to P as the referencing baseline payoff.
Within the context of PD, an extortioner’s payoff is never below the payoff of its opponent [10]. When two players using
extortionate ZD meet, they would both get the payoff P . Although the extortionate ZD strategy given in Ref. [10] would
catalyze cooperation [12], it is evolutionarily unstable [12,13]. Stewart and Plotkin [11] showed that a more generous ZD
strategy gets the highest scores among the important strategies such as AllC, AllD, TFT, WSLS and other strategies in a
tournament similar to that of Axelrod [21,22], and the strategy can outperform classic IPD strategies and dominate in a large
population [23]. It indicates that there may exist robust ZD strategies beyond the one given in Ref. [10] that can have an
edge in the two-player IPD. More recently, studies on the effectiveness of ZD strategies have been extended to multi-player
games [24–28] as well as to IPD with co-evolution of strategies and payoffs [29]. Furthermore, when there exist multiple
time scales in a co-evolving system, the interplay between the time scales becomes an important factor [30] and it has been
shown that the different time scales could help sustain the extortioners in the system [12]. In the present work, we study
a class of ZD strategies that extend the previous extortionate ZD strategies [10,23] and investigate how the ZD strategies
compete with the other important strategies, i.e., AllC, AllD, TFT, and WSLS, in populations that are well-mixed and with a
spatial structure of a two-dimensional square lattice.

The plan of the paper is as follows. In Section 2, we define a class of generalized ZD strategies in which the excessive
payoff to the players is measured with respect to a tunable baseline value. In Section 3, the expected payoffs when the
generalized ZD strategy competes against the classic IPD strategies of AllC, AllD, TFT and WSLS in a two-person IPD are
evaluated and discussed. The calculated expected payoffs are then used in an evolutionary game in which the players may
imitate the strategy of their better performing neighbors. The case of generalized ZD strategy competing with each of the
classic strategies in a well-mixed population is discussed in Section 4. Both simulation and analytic results are presented.
In corresponding case of a population on a square lattice is discussed in Section 5. A qualitative explanation of the strategy
selection dynamics is presented within the physical picture of alignments of payoff levels. A summary is given in Section 6.

2. A class of generalized ZD strategies

The class of ZD strategies (pCC , pCD, pDC , pDD) among the memory-one strategies can be described by [10]

pCC = 1 + αR + βR + γ ,

pCD = 1 + αS + βT + γ ,

pDC = αT + βS + γ ,

pDD = αP + βP + γ , (1)
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