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h i g h l i g h t s

• A nonstandard construction of Brownian motion (the Wiener walk) is given.
• Known results for the random walk are given a nonstandard version.
• The results are extended to the Wiener walk.
• The work is entirely based on Nelson’s Radically Elementary Probability Theory.
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a b s t r a c t

This article uses Radically Elementary Probability Theory (REPT) to prove results about the
Wiener walk (the radically elementary Brownian motion) without the technical apparatus
required by stochastic integration. The techniques used replace measure-theoretic tools
by discrete probability and the rigorous use of infinitesimals. Specifically, REPT is applied
to the results in Palacios (The American Statistician, 2008) to calculate certain expectations
related to the Wiener walk and its maximal function. Because Palacios uses mostly combi-
natorics and nomeasure theory his results carry over through REPT withminimal changes.
The paper also presents a construction of the Wiener walk which is intended to mimic the
construction of Brownianmotion from ‘‘continuous’’ white noise. A brief review of the non-
standard model on which REPT is based is given in the Appendix in order to minimize the
need for previous exposure to the subject.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Palacios [1] showed how to use elementary results from Feller [2] in order to compute certain expectations associated
with the simple symmetric random walk. He mentions that his results could be extended to Brownian motion but the
necessary limiting operationswould require advancedmaterial outside the scope of Feller. The advanced,measure-theoretic,
material is required in the transition from discrete-time to continuous-time processes in order to do rigorous stochastic
limiting operations involving the derivative of Brownian motion.

Could we overcome these technicalities about the derivative of Brownian motion by means of elementary mathemat-
ics? The answer depends on what we mean by ‘‘elementary’’. What Palacios means by ‘‘elementary’’ is material from Feller
consisting of combinatorics and Stirling’s approximation which is not enough to deal with Brownian motion. However, a
nonstandard model proposed by Edward Nelson [3] and known as Radically Elementary Probability Theory (REPT) provides a
way for studying probability at a general level without requiringmeasure theory. REPT covers basic probability and stochas-
tic processes up to the martingale central limit theorem using a model that is entirely based on finite sample spaces. Recent
advances in this field include the study of interacting particle systems [4] and applications of stochastic calculus to both
mathematical physics and financial engineering [5].
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Here the term ‘‘model’’ is to be understood in the sense of model theory [6], and also in the Physics sense, a structure
representing something not directly observable, and not in the sense of a mathematical model, say a set of equations,
describing an observable physical system. In either model (REPT or conventional probability) we play with idealizations:

‘‘Nonstandard analysis is a powerful addition to classical mathematics. Statements and proofs in it can be reduced to
classical statements and proofs, and often the nonstandard proofs are much shorter and easier to understand. But the
new concepts are in general new, not reducible to classical mathematics. (. . . ) Mathematics is our invention, and we can
have infinitesimals or not, as we choose. The only constraint is consistency’’. (Nelson [7]; emphasis added.)

The question is which abstraction (unlimitedness vs. infinity) we wish to use. The use of infinite sequences requires real
analysis whereas the use of infinitesimals and their reciprocals (unlimited numbers) requires nonstandard mathematics.
Neither model is trivial but the simplification provided by REPT is of particular use for those interested in the essential
aspects of probability theory without long technical detours.

The Appendix below summarizes the basic notions of Nelson’s nonstandard model but the reader can safely proceed
without it and trust his intuition when encountering concepts which are not part of conventional analysis (infinitesimality,
near equality, unlimitedness, etc.). After a few definitions regarding stochastic processes and the Wiener walk (Section 2) I
will illustrate the reach of REPT by proving three new results.

The first result (Theorem 2.1) is a characterization of the radically elementary analogue of Brownian motion, the
Wiener walk [8,9,3], in terms of difference equations (i.e. radically discretized differential equations). A more sophisticated
characterization is given by radically elementary versions of Girsanov’s theorem in Refs. [8,5] but it is not needed here.

The second proposition (Theorem 2.2) is just an adaptation of Palacios’ main results stated in terms of nonstandard
concepts.

Finally, the third result (Theorem 2.3) picks up where Palacios left off to show how his results can be extended to the
Wiener walk without the ‘‘advanced notions’’ he wanted to avoid. Particularly, REPT is combinedwith the results in Palacios
to calculate EW (t), EM(t), EW 2(t), EM2(t) and the correlation betweenW (t) andM(t)whereW (t) represents theWiener
walk andM(t) is its maximal function at time t .

2. The Wiener walk

2.1. Introduction

In REPT, a stochastic process X is a random sequence indexed by a finite time set T and defined over a finite probability
space (Ω, pr), X : T × Ω → R. With the usual discarding of the argument ω ∈ Ω we can denote X at time t ∈ T either by
X(t) or by Xt .

Let T = {a, . . . , b}. For t in T ′
= T \ {b} we write t + dt for its successor and define dX(t) = X(t + dt) − X(t).

Remark 2.1. Within REPT, one may think of a ‘‘continuous-time process’’, such as Brownian motion, when T = {0, . . . , 1}
is a near interval, that is with infinitesimal increments (dt ≃ 0, ∀t), and a ‘‘discrete-time process’’ when T = {1, 2, . . . , ν}

with ν ≃ ∞, but in either case T is a finite subset of R. The state space Ω on which each X(t) is defined is also a finite subset
of R which can also be nearly continuous (but still discrete) by having infinitesimal spacing.

A processW on the near interval T = {a, . . . , b} such that

I. W (a) = 0;
II. dW (a), . . . , dW (b − dt) are independent;
III. dW (t) = ±

√
dt with probability 1/2;

is called the Wiener walk. It is the radically elementary equivalent of Brownian motion and it appears in REPT’s functional
central limit theorem [3, Chapter 18] though Nelson uses martingale theory to motivate it. Note that there is no need to
build a process as the limiting case of a randomwalk. TheWiener walk has already been built with both its step lengths and
time intervals infinitesimal.

In conventional probability much of the motivation to study Brownian motion B(t) comes from stochastic differential
equations. Important equations in Physics and Finance are formulated as linear first-order stochastic differential equations
which take the derivative Ḃ(t) as input, such as Langevin’s velocity process,

aẎ (t) + bY (t) = Ḃ(t).

However the derivative of B(t), does not exist as a regular stochastic process and this is usually overcome by physical inter-
pretation or by analogies with the discrete case. Doob [10] notes that such equations are to be interpreted ‘‘symbolically’’,
since Ḃ(t) does not exist in the usual sense. Technically, of course, there is nothing wrong or pathological: dB(t) is not a
separate mathematical object but always part of a (stochastic) integral. However the mathematical apparatus needed to
fully grasp this concept is substantial. Notice that Karlin and Taylor [11, Chapter 7] make a disclaimer after giving some
justification for the fact that

 t
0 [dB(τ )]2 = t: ‘‘A typical feeling on seeing this for the first time is disbelief accompanied by

a strong desire to check the analysis carefully and preclude the possibility of error. The differential formula [dB(t)]2 = dt
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