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h i g h l i g h t s

• A D2Q8 MRT-LB model is proposed for simulating incompressible porous flows at the REV scale.
• The generalized non-Darcy model is employed to describe the momentum transfer in porous media.
• The generalized Navier–Stokes equations can be recovered through the Chapman–Enskog analysis in the moment space.
• The MRT-LB model is demonstrated by numerical simulations of several typical two-dimensional porous flows.
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a b s t r a c t

In this paper, a two-dimensional eight-velocity multiple-relaxation-time (MRT) lattice
Boltzmann (LB) model is proposed for incompressible porous flows at the representative
elementary volume scale based on the Brinkman–Forchheimer-extended Darcy model. In
the model, the porosity is included into the pressure-based equilibriummoments, and the
linear and nonlinear drag forces of the porous matrix are incorporated into the model by
adding a forcing term to the MRT-LB equation in the moment space. Through the Chap-
man–Enskog analysis, the incompressible generalized Navier–Stokes equations can be re-
covered. Numerical simulations of several typical porous flows are carried out to validate
the present MRT-LB model. It is found that the present numerical results agree well with
the analytical solutions and/or other numerical results reported in the literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fluid flow and related transport phenomena in porous media have gained significant research interest due to the im-
portance of related technological and industrial applications, which include contaminant transport in groundwater, crude
oil exploration and extraction, radioactive waste management, hydrogeology and so on [1–3]. For incompressible flows in
porous media at the representative elementary volume (REV) scale, the Darcy model, the Brinkman-extended Darcy model
and the Forchheimer-extended Darcy model have been widely employed. However, the Darcy model and the two extended
(Brinkman and Forchheimer) models have some intrinsic limitations in simulating porous flows [4,5]. In order to over-
come the deficiencies of the above mentioned models, the Brinkman–Forchheimer-extended Darcy model (also called the
generalized model) has been developed by several research groups [4–7]. In the generalized model, the viscous and iner-
tial forces are incorporated into the momentum equation by using the local volume-averaging technique at the REV scale.
The Darcy model and the two extended models can be regarded as the limiting cases of the generalized model. Due to the
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similarity with the Navier–Stokes equations, the generalized model can be used to simulate transient flows through porous
media. Moreover, as reported by Vafai and Kim [8], numerical results based on the Brinkman–Forchheimer-extended Darcy
formulation have been shown to be in good agreement with the experimental predictions. In the past several decades, var-
ious traditional numerical methods, such as the finite volume (FV) method, the finite difference (FD) method, and the finite
element (FE) method, have been employed to study porous flows based on the generalized non-Darcy model.

The lattice Boltzmann (LB) method, as a bran-new mesoscopic numerical technique originates from the lattice-gas
automata (LGA) method [9], has achieved significant success in modeling complex fluid flows and simulating complex
physics in fluids [10–16]. Owing to its kinetic background, the LB method has some distinctive advantages over the
traditional numerical methods (e.g., see Ref. [17]). Recently, the LB method has been successfully applied to simulate fluid
flows in porous media at the REV scale [18–25]. In the REV scale method, the detailed geometric structure of the media
is ignored, and the standard LB equation is modified by adding an additional term to account for the presence of the
porous media. Therefore, LB method at the REV scale can be used for systems with large computational domain. It is worth
mentioning that the REV LB method is very effective for simulating fluid flows in the region which is partially filled with a
porousmedium. As reported in Ref. [21], the discontinuity of the velocity-gradient at the porousmedium/free-fluid interface
can be well captured by the LB method without including the stress boundary condition into the simulation model.

To the best of our knowledge, most of the existing REV LB models [18–25] for incompressible porous flows employ the
Bhatnagar–Gross–Krook (BGK) model (also called the single-relaxation-time model) [26] to represent the collision process.
Although the BGK-LBmodel has become the most popular one in the LB community because of its extreme simplicity, there
are several well-known criticisms on this model, such as the numerical instability at low values of viscosity [27–29] and
the inaccuracy in treating boundary conditions [30]. Fortunately, these shortcomings of the BGK-LB model can be easily
addressed by employing the multiple-relaxation-time (MRT) model proposed by d’Humières [31]. Hence, the aim of this
paper is to develop a newMRT-LB model for incompressible porous flows at the REV scale based on the generalized model.
In the model, a pressure-based MRT-LB equation with the eight-by-eight collision matrix [32] is constructed in the frame-
work of the standard MRT-LB method. The remainder of this paper is organized as follows. In Section 2, the MRT-LB model
for incompressible porous flows at the REV scale is presented in detail. In Section 3, numerical tests of the MRT-LB model
are performed for the porous Poiseuille flow, porous Couette flow, lid-driven flow in a square porous cavity, and natural
convection flow in a square porous cavity. Finally, a brief conclusion is made in Section 4.

2. MRT-LB model for incompressible flows in porous media

2.1. Macroscopic governing equations

The fluid flow is assumed to be two-dimensional, laminar and incompressible. For incompressible flows through porous
media at the REV scale, the generalized model proposed by Nithiarasu et al. [4] is employed in the present study. The
dimensional governing equations (generalized Navier–Stokes equations) of the generalizedmodel can bewritten as follows:

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)


u
φ


= −
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∇ (φp) + υe∇
2u + F, (2)

where ρ0 is the average fluid density, u and p are the volume-averaged fluid velocity and pressure, respectively, φ is the
porosity, and υe is the effective kinetic viscosity. F =


Fx, Fy


denotes the total body force induced by the porous matrix and

other external forces, which can be expressed as [6,22]

F = −
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K
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√
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where υ is the kinetic viscosity of the fluid, K is the permeability, Fφ is the geometric function, a is the body force due to

an external force, and |u| =


u2
x + u2

y , in which ux and uy are the x- and y-components of the macroscopic velocity u,
respectively. Based on Ergun’s relation [33], the geometric function Fφ and the permeability K of the porous media can be
expressed as [34]

Fφ =
1.75
150φ3

, K =
φ3d2p

150 (1 − φ)2
, (4)

where dp is the diameter of the solid particle. The flow governed by the generalized Navier–Stokes equations (1) and (2) are
characterized by the porosity φ and several dimensionless parameters: the Darcy number Da, the viscosity ratio J , and the
Reynolds number Re, which are defined as

Da =
K
L2

, J =
υe

υ
, Re =

LU
υ

, (5)

where L and U are the characteristic length and velocity of the system, respectively.
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