
Physica A 429 (2015) 252–260

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

On the super-additivity and estimation biases of quantile
contributions
Nassim Nicholas Taleb a,∗, Raphael Douady b

a School of Engineering, New York University, United States
b Riskdata & C.N.R.S. Paris, Labex ReFi, Centre d’Economie de la Sorbonne, France

h i g h l i g h t s

• Estimating concentration (inequality or dispersion) or other statistical properties (such as severity of violent conflicts) from top quantile
contributions is inconsistent under aggregation.

• The measure increases with the size of the total population and converges very slowly.
• The bias is more acute at fatter tails, lower tail exponent alpha and smaller centile.
• The weighted average of measures for A and Bwill be ≤ than that from A ∪ B.
• The effect is exacerbated under mixing distributions (stochastic tail exponent).
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a b s t r a c t

Sample measures of top centile contributions to the total (concentration) are downward
biased, unstable estimators, extremely sensitive to both sample and population size and
concave in accounting for large deviations. Itmakes themparticularly unfit in domainswith
power law tails, especially for low values of the exponent. These estimators can vary over
time and increasewith the population size, thus providing the illusion of structural changes
in concentration. They are also inconsistent under aggregation and mixing distributions,
as the weighted average of concentration measures for A and B will tend to be lower
than that from A ∪ B. In addition, it can be shown that under such fat tails, increases
in the total sum need to be accompanied by increased sample size of the concentration
measurement. We examine the estimation superadditivity and bias under homogeneous
and mixed distributions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vilfredo Pareto noticed that 80% of the land in Italy belonged to 20% of the population, and vice-versa, thus both giving
birth to the power law class of distributions and the popular saying 80/20. The self-similarity at the core of the property of
power laws [1,2] allows us to recurse and reapply the 80/20 to the remaining 20%, and so forth until one obtains the result
that the top percent of the population will own about 53% of the total wealth.

It looks like such a measure of concentration can be seriously biased, depending on how it is measured, so it is very
likely that the true ratio of concentration of what Pareto observed, that is, the share of the top percentile, was closer to 70%,
hence changes year-on-year would drift higher to converge to such a level from larger sample. In fact, as we will show in
this discussion, for, say wealth, more complete samples resulting from technological progress, and/or larger population and
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economic growthwill make such ameasure converge by increasing over time, for no other reason than expansion in sample
space or aggregate value.

The core of the problem is that, for the class one-tailed fat-tailed random variables, that is, bounded on the left and
unbounded on the right, where the randomvariable X ∈ [xmin, ∞), the in-sample quantile contribution is a biased estimator
of the true value of the actual quantile contribution.

Let us define the quantile contribution

κq = q
E[X |X > h(q)]

E[X]

where h(q) = inf{h ∈ [xmin, +∞) , P(X > h) ≤ q} is the exceedance threshold for the probability q.
For a given sample (Xk)1≤k≤n, its ‘‘natural’’ estimatorκq ≡

qth percentile
total , used in most academic studies, can be expressed,

as

κq ≡

n
i=1

1Xi>ĥ(q)Xi

n
i=1

Xi

where ĥ(q) is the estimated exceedance threshold for the probability q:

ĥ(q) = inf


h :

1
n

n
i=1

1x>h ≤ q


.

We shall see that the observed variableκq is a downward biased estimator of the true ratio κq, the one that would hold out
of sample, and such bias is in proportion to the fatness of tails and, for very fat tailed distributions, remains significant, even
for very large samples.

2. Estimation for unmixed Pareto-tailed distributions

Let X be a random variable belonging to the class of distributions with a ‘‘power law’’ right tail, that is:

P(X > x) ∼ L(x) x−α (1)

where L : [xmin, +∞) → (0, +∞) is a slowly varying function, defined as limx→+∞
L(kx)
L(x) = 1 for any k > 0.

There is little difference for small exceedance quantiles (<50%) between the various possible distributions such as
Student’s t, Lévy α-stable, Dagum, [3,4] Singh–Maddala distribution [5], or straight Pareto.

For exponents 1 ≤ α ≤ 2, as observed in Ref. [6], the law of large numbers operates, though extremely slowly. The
problem is acute for α around, but strictly above 1 and severe, as it diverges, for α = 1.

2.1. Bias and convergence

2.1.1. Simple Pareto distribution
Let us first considerφα(x) the density of aα-Pareto distribution bounded frombelowby xmin > 0, in otherwords:φα(x) =

αxα
minx

−α−11x≥xmin , and P(X > x) =
 xmin

x

α . Under these assumptions, the cutpoint of exceedance is h(q) = xmin q−1/α and
we have:

κq =


∞

h(q) xφ(x) dx
∞

xmin
xφ(x) dx

=


h(q)
xmin

1−α

= q
α−1
α . (2)

If the distribution of X is α-Pareto only beyond a cut-point xcut, which we assume to be below h(q), so that we have
P(X > x) =


λ
x

α
for some λ > 0, then we still have h(q) = λq−1/α and

κq =
α

α − 1
λ

E [X]
q

α−1
α .

The estimation of κq hence requires that of the exponent α as well as that of the scaling parameter λ, or at least its ratio to
the expectation of X .

Table 1 shows the bias ofκq as an estimator of κq in the case of an α-Pareto distribution for α = 1.1, a value chosen to
be compatible with practical economic measures, such as the wealth distribution in the world or in a particular country,
including developed ones.1 In such a case, the estimator is extremely sensitive to ‘‘small’’ samples, ‘‘small’’ meaning in

1 This value, which is lower than the estimated exponents one can find in the literature – around 2 – is, following [7], a lower estimate which cannot be
excluded from the observations.
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