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a b s t r a c t

The deformation relaxation behavior of two types of vesicles, liposomes and polymer-
somes, was investigated using a general nonequilibrium thermodynamics theory based on
the interfacial transport phenomena (ITP) formalism. Liposomes and polymersomes are
limiting cases of this theory with respect to rheological behavior of the interfaces. They
represent respectively viscous, and viscoelastic surface behavior. We have determined the
longest relaxation time for a small perturbation of the interfaces for both these limiting
cases. Parameter maps were calculated which can be used to determine when surface ten-
sion, bending rigidity, spontaneous curvature, interfacial permeability, or surface rheology
dominate the response of the vesicles. In these systems up to nine different scaling regimes
were identified for the relaxation time of a deformation with droplet size, with scaling
exponent n ranging from 0 to 4.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Liposomes and polymersomes are vesicles formed by self-assembly of respectively lipids, and amphiphilic block-
copolymers [1–3]. They are examples of water-in-water emulsions, i.e. dispersions of an aqueous phase in another aqueous
phase. They have high potential as controlled release or encapsulation systems in, for example, food, pharmaceutical
applications, or cosmetic products.
The dynamic behavior of these types of water-in-water emulsions is highly complex. Several models have been proposed

to describe this behavior [4], but none of these models cover the full spectrum of variables that influence the dynamic
behavior. In particular the coupling between deformation of the vesicles and the transfer of mass to and from the interior
phase are not adequately accounted for. Recent studies have shown that in water-in-water emulsions these processes are
strongly coupled, and that mass transfer has a significant effect on stress–deformation behavior, and vise versa, that the
stress–deformation behavior can affect mass transfer [5–11].
Recently a general theorywas developed for the dynamic behavior of droplets inwater-in-water emulsions, that accounts

for the coupling between deformation and mass transfer [4]. The theory is a nonequilibrium thermodynamics theory based
on the interfacial transport phenomena (ITP) formalism [12]. It describes the thermal fluctuations of the interfaces of
spherical droplets (or vesicles), without an imposed external flow field and without external force fields. Starting with the
principles of conservation of mass and momentum for multiphase systems with excess parameters (surface mass density,
surfacemomentum, etc.) associatedwith the interfaces, differential balances are derived for the bulk phases and interfaces of
these systems [4]. With an appropriate choice for the constitutive equation of the mass flux vectors a coupling is introduced
between the deformation of the interfaces, andmass transfer across these interfaces [4]. Wewill briefly review the essential
elements of this theory in the next paragraphs.
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The velocity and pressure fluctuations in the bulk phases are calculated from the linearized equations of continuity and
differential momentum balances:

∂δρ(i)

∂t
+ ρ̄(i)div v(i) = 0 (1)

∇P (i) = ν(i)∇ (div v)+ 2η(i)divD(i) + fh(i) (2)

where δρ(i) are the fluctuations of the total mass density, ρ̄(i) is the equilibrium total mass density, ν(i) = η(i)b −
2
3η

(i), η(i)b is
the bulk viscosity, η(i) is the shear viscosity, D(i) is the rate of deformation tensor and fh(i) is the force resulting from thermal
fluctuations. In arriving at (2) Newtonian behavior was assumed for both bulk phases.
The fluctuations of the position of the interface are calculated from the jump mass balances and the jump momentum

balance [4]:
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where R(θ, ϕ, t) is the parametrization of the interface, (r, θ, ϕ) are spherical coordinates, λp is the permeability of the
interface, P (i) is the pressure in phase i, γ0 is the surface tension of the flat interface, k is the bending rigidity of the interface,
and C0 is the spontaneous curvature. R0 is the radius of the non-deformed vesicle, z̄

(i)
(A) = ρ̄

(i)
(A)/∆ρ̄(A), ∆ρ̄(A) = ρ̄

(1)
(A) − ρ̄

(2)
(A) ,

ρ̄
(i)
(A) is the equilibrium density of species A in phase i, and v

(i)
r is the r-component of the mass-averaged velocity in phase i;

(divs σs)r denotes the r-component of the surface divergence of the surface extra stress tensor σs, ∇2s denotes the surface
Laplacian, and σ (i)rr is the rr-component of the extra stress tensor of phase i.
Eq. (3) describes the time rate of change of the position of the interface as a result of a diffusive mass flux across the

interface, and a convective term, proportional the difference in the bulk velocities evaluated at the interface. In arriving
at (3) it was assumed that the mass flux vectors of species A in the mixture, evaluated at the interface, are given by

(j(1)(A) − j(2)(A)) · ξ = λp∆ρ̄(A)
(
P (1) − P (2) −∆P̄

)
(5)

where j(i)(A) denotes the mass flux vector of A in phase i, ξ is the unit vector normal to the interface, and ∆P̄ = −2γ /R0
is the Laplace pressure of the non-deformed droplet. By assuming (5) the interface is basically modelled as a permeable
membrane. The equation predicts zero mass transfer when the droplet is not deformed, and predicts an increasing mass
transfer with increasing deformation. As a result of the second term in the jump mass balance (3) this equation is coupled
to the jump momentum balance (4) through the Laplace pressure drop that appears in the latter expression. This coupling
gives us the coupling between mass transfer and stress–deformation behavior observed for these systems.
The first term in the jump momentum balance (4) represents the interfacial viscous stresses. It is through this term

that we will incorporate the effects of the surface rheological properties of the interface on the relaxation behavior. The
second and third terms in (4) are the familiar surface tension and bending rigidity terms we also encounter in for example
membranes [13,14]. The last term in (4) represents the viscous stresses exerted on the interface by the adjoining bulk phases.
The set of four differential equations (1) through (4) needs to be closed with a constitutive equation for the surface

extra stress tensor. In this paper we will focus on the dynamic behavior of liposomes and polymersomes, and for the extra
stress tensor of the interfaces we will assume either viscous, or linear viscoelastic surface behavior [12]. The assumption
of viscous behavior will be valid for liposomes with bilayers composed of simple lipids. For liposomes with more complex
lipids, multilayer liposomes, and polymersomes a linear viscoelastic model would be more appropriate. The particular form
of these constitutive models will be discussed in the next section. In Sections 3 and 4 wewill use the model described above
to study the dynamic behavior of liposomes and polymersomes. We will limit ourselves to the calculation of the longest
relaxation time for a small perturbation of the interfaces in these systems, and subsequently analyze the scaling behavior of
this relaxation timewith droplet radius R0. In spite of the fact that the theory is valid only for small deformations, it provides
a lot of insight into the complex behavior of these systems (up to nine scaling regimes are identified). It also suggests new
experiments to characterize the interfacial properties in water-in-water emulsions.

2. Rheological behavior of the interfaces

The surface extra stress tensor of viscous interfaces can be described with the linear Boussinesq model [15]. According
to this model

σs = (εd − εs)(divs vs)P+ 2εsDs (6)

where εd is the surface dilatational viscosity, εs is the surface shear viscosity, P is the surface projection tensor, and
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