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ARTICLE INFO ABSTRACT

Article history: The phenomenon of data loss always occurs in the analysis of large databases. Maintaining

Available online 7 August 2014 the stability of analysis results in the event of data loss is very important. In this paper, we
o used a segmentation approach to generate a synthetic signal that is randomly wiped from

g‘;{ ;Vloors ; data according to the Gaussian distribution and the exponential distribution of the origi-

Heart rate variability pal signal. Then, the logistic map is used as \{erification. Finally, two methgds of measur-
Base-scale entropy ing entropy—base-scale entropy and approximate entropy—are comparatively analyzed.
Approximate entropy Our results show the following: (1) Two key parameters—the percentage and the average
length of removed data segments—can change the sequence complexity according to logis-
tic map testing. (2) The calculation results have preferable stability for base-scale entropy
analysis, which is not sensitive to data loss. (3) The loss percentage of HRV signals should
be controlled below the range (p = 30%), which can provide useful information in clinical

applications.
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1. Introduction

Currently, with the rapid development of information technology, the study of signal processing methods to concentrate,
extract and purify information from large quantities of chaotic data is the current focus of theory and application research
in many fields, including scientific research, computer simulation, and finance [1-3]. On this issue, experts all over the
world have performed extensive research and exploration with resulting great achievements [1-7]. However, data loss or
data uselessness is inevitably encountered in real-world signal analysis, which causes many difficulties in data analysis and
application, especially in the census, environmental monitoring, medical science and other large longitudinal studies. For
example, heart rate variability (HRV) signals, which indicate the change in instantaneous heart rate, are an important index
in evaluating the function of the autonomic nervous system. The HRV signal acquisition process can be affected by many
factors, such as, the complex operation of equipment, long-term monitoring, and loose electrode contacts. Thus, it is easy to
cause partial data loss. Moreover, the acquired original signals often contain some non-normal data, such as noise signals,
artifacts and ectopic pacemaker signals. When these signals are pretreated by certain calculation methods, a small error can
lead to normal data loss.

Based on earlier research on the problem of data loss [8-10], for instance, Z. Chen et al. have studied the effect of removing
fixed length segments from a signal and stitching together the remaining parts using the DFA correlation analysis method [8].
N.E. Romero et al. have applied four treatment methods of data loss: listwise deletion, pairwise deletion, mean imputation
and multiple imputation, to analyze the effect of data loss on the tests for the presence of market mechanisms [9]. The effect
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Fig. 1. Illustration of generating the synthetic signal h(i) by removing data points from the intact original signal u(i) according to a binary series g (i).

of the percentage and the average length of removed data segments have been studied using the DFA scaling method by
Qianli D.Y. Ma et al. [10]. We intend to focus more on the problem of data loss and explore more actively its effect on the
estimation of multi-scale linear and nonlinear scaling measures. Meanwhile, when measuring whether a data processing
method is reliable, we should pay more attention to the problem of whether the analysis results are stable, regardless of
whether the original data are lost. Then, the hypothesis can be proposed that if an analysis method can maintain the stability
of results in the situation of data loss, this method can analyze real-world data and predict the future trend according to the
present state.

In this paper, the hypothesis is verified by the base-scale entropy method using a segmentation approach developed by
Qianli D.Y. Ma et al. [10], which randomly wipes away data according to the probability distribution given by the original
data. First, the logistic map is used as a verification. Then, two methods of entropy measurement—base-scale entropy
and approximate entropy—were comparatively analyzed. The result showed that the approximate entropy (ApEn) is too
sensitive to data loss for use in real-world signal analysis. However, the base-scale entropy has a stable result regardless
of data loss and can thus be used to analyze real-world signals. Finally, to rule out the contingency of results through only
one test, we calculated the respective base-scale entropy in 50 tests of data loss. The above results were verified, and we
also found that the base-scale entropy can provide useful information for accurately judging physiological and pathological
status as long as data loss is controlled below a certain range.

2. Methods
2.1. Synthetic signal generation

To simulate data loss, we first generate a binary series g(i) with the same length N as the intact original series u(i), using
the segmentation approach [10]. In this method the positions i where g(i) = 1 will correspond to the positions at which
data points in u(i) are removed, while the positions where g (i) = 0 will correspond to the positions at which data points
in u(i) are preserved (Fig. 1) [10]. Finally, we generate a synthetic signal h(i) by randomly removing data points from the
original signal u(i) and stitching together the remaining parts of u(i) according to the binary series g (i). The synthetic signals
h(i) are characterized by three parameters: (i) the percentage p of removed data, (ii) the average length u of the removed
data segments, and (iii) the functional form P(L) of the distribution of the length L of the removed data segments.

We used the following method to generate the binary series g(i) [10]:

(i) We generate the lengths L(j) G = 1, 2, 3, ..., M) of the data segments to be removed from the intact original signal
u(i) by randomly drawing integer numbers from a given probability distribution P(L) with mean value u. Each integer
number drawn from P(L) represents the length of a data segment removed from u(i). The process continues until the
summation of the lengths of all removed data segments equals or exceeds a predetermined amount pNof data to be removed,
ie,

M
> L) =pN (1)

=1

where M is the minimal number to fulfill Eq. (1) [10]. Finally, we calculate the size of the last segment to obtain the exact
fraction pN of the lost data.

(ii) We append a “0” to each element in the series {L(j)} to act as a separator between two adjacent segments [see step(iv)],
resulting in a new series {[L(j), 0]}. Note that now the sum of the series is pN + M.

(iii) We append [N — (pN + M)] number of elements “0” to the end of the series {[L(j), 0]} to make an extended series
where the sum of all elements is N, equal to the length of the original series u(i). Then, this extended series is shuffled,
leading to a set of M elements [L(j), 0] randomly decentralized in a “sea” of [N — (pN + M)] elements “0” [see Eq. (2)] [10].

(iv) Next, we replace the numbers L(j) in Eq. (2) with L(j) number of elements “1” to obtain the binary series g(i) as
shown in Eq. (3) [10].

H@ ={...,0,[L(),0],0,...,0,[LG+ 1),0], [LG+2),0],0, ...} (2)

.
gi=¢{..,0,1,...,1,0,0,...,0,1,...,1,0,1,...,1,0,0, ..., }. (3)
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