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h i g h l i g h t s

• Our work characterizes a single exponent estimator like DFA when applied to mBm.
• DFA estimates a time averaged Hurst exponent in systems: this assertion is verified.
• We identify parameters that can impact the robustness of DFA.
• Results serve as benchmark for using DFA as sliding window Hurst exponent estimator.
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a b s t r a c t

The Hurst exponent (H) is widely used to quantify long range dependence in time series
data and is estimated using several well known techniques. Recognizing its ability to
remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a
Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly
encompasses a set of models of non-stationary data exhibiting time varying Hurst
exponents, H(t) as against a constant H . Recently, there has been a growing interest in
time dependence ofH(t) and slidingwindow techniques have been used to estimate a local
time average of the exponent. This brought to fore the ability of DFA to estimate scaling
exponents in systems with time varying H(t), such as mBm. This paper characterizes the
performance ofDFA onmBm datawith linearly varyingH(t) and further test the robustness
of estimated time average with respect to data and technique related parameters. Our
results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t)
from time series data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Statistical properties such as trends and correlations of complex phenomena are important in the study of non-
equilibrium phenomena such as extreme events. Due to the non-equilibrium nature of complex driven systems, general
statistical analysis tools cannot be readily applied to them. Long range dependence (LRD) in data is a key feature [1] and
is studied in data from diverse physical systems such as temperature records, river flows, heart beat variability, and space
weather, [2–11].

Rescaled range analysis (R/S) [12] and fluctuation analysis (FA) [13] are statistical tools developed to estimate the
variability of time series through estimation of Hurst exponent, H [14], a statistic which is directly related to the scaling
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in autocorrelation functions, and, also to the fractal dimension of the time series data. While the scaling exponent, H , is
equal to 0.5 for uncorrelated white noise, many natural systems demonstrate values close to 0.7 [15].

These techniques, however, fail to estimate H in non-stationary data. More recently, Detrended Fluctuation Analysis
(DFA) [16], which is widely considered a better technique than either R/S or FA due to its capability to detrend a time series
data while estimating H , making it viable for non-stationary systems.With increased use of DFA technique, its limitations in
detrending capabilities are evident [17] and there is need for better alternative detrending schemes for data with atypical
trends e.g., trends that are not addressable by polynomial detrending [18]. In spite of its purported shortcomings, DFA is
recognized as an efficientHurst exponent estimation technique because it utilizes detrending to estimate over lesser number
of averages than FA.

Fractional Brownian motion (fBm), a generalization of Brownian motion, is a quintessential theoretical model for the
Hurst effect [19]. Since its discovery, there has been an interest inmodeling physical systems as fBm. However, it was quickly
realized that imposing a uniformH over the span of the data is in fact a restricting condition as uniform level of LRD in real life
data is uncommon. Multifractional Brownian motion (mBm) is a generalization of fBm relaxing this condition [20], allowing
for variable degrees of self-similarity with non-stationary increments i.e., H varies as H(t) over the time span of the data. It
should be realized that mBm is also multifractal in nature due to multiple fractal dimensions in the system within the time
span of the data. Tunability of its local regularity is a valuable property of mBm, realizing which there has been increased
interest in modeling various geophysical systems asmBm [21–23].

Although there is increasing use of DFA as a technique to study LRD in time series data, it iswidely recognized that it yields
a single Hurst exponent, and thus cannot distinguish between multi-fractal and mono-fractal systems, e.g., between mBm
and fBm. In fact most systems exhibit time varying H exponent, but the estimates yield a constant value. Further, previous
studies show the effect of data size used on the Hurst exponent [24,25], thus requiring caution in the interpretation of the
estimated values. This is in direct agreement with our study of effect of data size on the Hurst exponent estimated by DFA
in mBm data as seen in Section 4.2. Other schemes such as Multi Fractal Detrended Fluctuation Analysis (MF-DFA) were
proposed [26], though such techniques address the multifractal nature of time series with respect to one fractal dimension
at a time anddonot provide a solutionwith respect to estimating the time varying fractal structure ofmBm. It is apparent that
DFA and other similar techniqueswere assumed to locally estimate a time averagedHurst exponent [27,28]. This assumption
underlies estimator techniques with sliding windows. We believe the success of estimating such a time average depends on
the assumption of local linearity of the Hurst exponents, and is analyzed in detail in Section 3.

Using mBm data generated from linearly varying Hurst exponents, H(t), we show that DFA in fact estimates the time
average of H(t) and test the dependence of estimated exponent on various data and technique related parameters. The
primary motivation for our study is to establish a bench mark for the performance of DFA in estimating a time averaged
Hurst exponents frommBm data, and, identify its limits.

Sections 2 and 3 introduce preliminary ideas of LRD, fBm,mBm, and, DFA, and, establish our estimationmethodology. The
main results of the study and conclusions follow in Sections 4 and 5, respectively.

2. Fractional/multifractional Brownian motion

Long Range Dependence (LRD), commonly identified as self-affinity, self-similarity, or long-range persistence, is a
statistical property of time series data where the rate of decay of its autocovariance is slower than exponential, and most
commonly a power law. This property is usually quantified using theHurst exponentH (also known as theHölder exponent),
which is measured using R/S or the fluctuation analysis (FA) technique for stationary data. The Hurst exponent, H ∈ (0, 1)
with increasing value implying increasing LRD, and 0.5 as the threshold where the correlations are completely absent.

Fractional Gaussian noise (fGn, which is stationary in nature) is proposed as a model for data with LRD and fractional
Brownian motion (fBm) (its non-stationary counterpart) is its corresponding Wiener process generated using fGn as its
incremental process. A continuous time fractional Brownianmotion (fBm),BH(t)withHurst exponentH is aGaussianprocess
with zero-mean and is H-self affine i.e.,

BH(λt) ∼= λHBH(t), ∀ λ > 0. (1)

Also, its covariance varies by definition as [29],

cov[BH(t1), BH(t2)] =
1
2
(|t1|2H + |t2|2H − |t1 − t2|2H). (2)

Thus, H characterizes the relative smoothness of the resulting Brownian motions. It can also be seen that when H = 1/2
and t1 > t2, cov[BH(t1), BH(t2)] = t2, thus it is a Wiener process (Brownian motion). However when H > 1/2, then the
increments are positively correlated and when H < 1/2, the increments are negatively correlated. This means that we
have a smooth long-term correlated time series data for when H > 1/2 and anti-correlated data for when H < 1/2. The
increments in a fBm is fractional Gaussian noise (fGn) as seen in Eq. (3), and is stationary in nature.

GH(t) = BH(t + 1) − BH(t). (3)

A problem with fBm is that although they capture the self-similarities well, the pointwise irregularity given by the
constant Hurst parameter, H , is invariant in time. This restricting condition can be over come by generalizing fBm to a
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