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• A new stochastic model of stock prices is induced by the conjugate heat equation.
• In our model, the volatility term is affected by inflation and exchange rate.
• Our model modifies the Black–Scholes equation.
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a b s t r a c t

Currency can be considered as a ruler for values of commodities. Then the price is the
measured value by the ruler. We can suppose that inflation and variation of exchange
rate are caused by variation of the scale of the ruler. In geometry, variation of the scale
means that themetric is time-dependent. The conjugate heat equation is themodified heat
equation which satisfies the heat conservation law for the time-dependent metric space.
We propose a new model of stock prices by using the stochastic process whose transition
probability is determined by the kernel of the conjugate heat equation. Our model of stock
prices shows how the volatility term is affected by inflation and exchange rate. This model
modifies the Black–Scholes equation in light of inflation and exchange rate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Black–Scholes equation is an option pricing equation obtained under the assumption that the stock price St follows
the stochastic process

dSt = µStdt + σ StdBt , (1.1)

where µ is the increasing rate of St , σ is the volatility constant and Bt is the Brownian motion [1,2]. In this model, inflation
and exchange rate are not considered. By conversations with economists about this topic, we realized that they use real
stock prices instead of nominal stock prices in order to reflect the effect of inflation. Precisely, it is assumed that the real
stock price S̃t follows the stochastic process

dS̃t = µ̃S̃tdt + σ S̃tdBt , (1.2)

where µ̃ is the increasing rate of S̃t . Then the Black–Scholes equation is modified with the inflation rate as we will see in
(4.20). Even if we assume the model (1.2), the volatilities of nominal stock prices are still not affected by inflation as we will
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see in (4.19). (Also see Ref. [3].) In Section 5, we give evidences which show that the volatility is affected by inflation and
exchange rate. Hence the existing model (1.2) is not consistent with reality.

We start from the insight that currency can be considered as a ruler for values of commodities. Then the price is the
measured value by the ruler. In other words, price can be considered as the parametrization of values of commodities by the
currency.We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler, which
means the metric tensor is time-dependent. In Riemannian geometry, the metric tensor g is 2-tensor such that g(v, v) is
the square of the norm of v. More precisely, let M be an n-dimensional Riemannian manifold and (U, φ) be a chart around
p ∈ M .Wedenote the coordinate functions by (y1, . . . , yn). Then themetric tensor g can be expressed as g =


i,j gijdy

i
⊗dyj,

shortly g =


i,j gijdy
idyj. If v =


i v

i ∂

∂yi
, then ∥v∥

2
= g(v, v) =


i,j gijv

ivj. In our case, if the coordinate function y is
the nominal price (i.e. the parametrization of values of commodities by the currency) and m is the square of the real price
of the unit currency, then the metric g can be expressed as g = mdy2(= mdy ⊗ dy). So if v(= v ∂

∂y ) is the nominal price of
a commodity A, then

√
mv =

√
g(v, v) is the real price of A. (Since R can be considered as a vector space, we can identify a

point whose coordinate is v ∈ R with the vector v ∂
∂y .) Hence g can be considered as a function from the nominal price v to

the real price
√
g(v, v).

We can consider inflation as contraction of the ruler, which implies that the metric g decreases as time t increases. If the
metric g is independent of time, then the heat equation is ∂u

∂t −
1
21u = 0 which satisfies the heat conservation law, where

∆ is the Laplacian for the metric g . If g depends on time t (i.e. g = g(t)), then the heat equation ∂u
∂t −

1
2∆tu = 0 does not

satisfy the heat conservation law, but the following conjugate heat equation satisfies the heat conservation law as we will
see in Section 2:

∂u
∂t

=
1
2
∆tu − hu, (1.3)

where ∆t is the Laplacian for the metric g = g(t). In our case, let y be the coordinate function as above (i.e. nominal price
at time t) and m(t) be the square of the real value of the unit currency at time t . Then g(t) = m(t)dy2 and h =

m′

2m .
(See Section 2 and [4].)

In themodels (1.1) and (1.2) of stock prices, the volatility terms of stock prices follow the Brownianmotion. The Brownian
motion is a stochastic process such that the heat kernel serves the density of the transition probability [5]. In our newmodel,
we use a stochastic processBt whose transition probability is determined by the kernel (1.5) of the conjugate heat equation
(1.3) instead of the heat kernel. Hence we propose the following stochastic model of stock prices, which is our main claim:
Stochastic model of stock prices

dSt = µStdt + σ StdBt . (1.4)

Recall that (dBt)
2

= dt for the Brownian motion Bt . In our case, we prove the following theorem in Section 3:

Theorem 1. If the metric g(t) is time-dependent so that g(t) = m(t)dy2, then the kernel of (1.3) is

p(t, x, y) =
1

√
m(t)

1
√
2πβ(t)

exp

−

(x − y)2

2β(t)


, (1.5)

where β(t) =
 t
0 m(s)−1ds. Furthermore, we obtain that

(dBt)
2

=
1

m(t)
dt.

Our new Black–Scholes equation induced from Theorem 1 is as follows.

Theorem 2. Let the stock price St follow dSt = µStdt + σ StdBt for constants µ, σ . Let V (S, t) be the price of the option at time
t if the price of the underlying stock at time t is S. If the real value of the unit currency at time t is

√
m(t), then V satisfies that

rV =
∂V
∂t

+
1
2

σ 2S2

m(t)
∂2V
∂S2

+ rS
∂V
∂S

. (1.6)

When some economists saw our model (1.4), they wondered if our model (1.4) is the same as the model (1.2). Comparing
our Black–Scholes equation (1.6) with the Black–Scholes equation (4.20) induced from (1.2), we can verify that our model
(1.4) is completely different from (1.2). Also we show in Section 5 that our model seems to be more consistent with reality.

For (1.6), we should determine m(t) which is the square of the real value of the unit currency at time t . If we let P(t) be

the price index at time t , then the inflation rate I(t) is I(t) =
d
dt P(t)
P(t) and P(t) = P(t0)e

 t
t0

Ids for the reference time t0 ≤ 0.
Since the reference time is t0, we havem(t0) = 1. In domestic trade, we have

m(t) =
P(t0)2

P(t)2
.
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