
Physica A 419 (2015) 513–525

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Finite sample properties of power-law cross-correlations
estimators
Ladislav Kristoufek ∗

Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4, 182 08, Prague 8,
Czech Republic
Institute of Economic Studies, Faculty of Social Sciences, Charles University, Opletalova 26, 110 00, Prague 1, Czech Republic

h i g h l i g h t s

• Finite sample properties of power-law cross-correlations estimators are studied.
• DCCA, DMCA and HXA methods are compared.
• Each of the methods is better suited for specific characteristics.
• There is no clear winner.
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a b s t r a c t

We study finite sample properties of estimators of power-law cross-correlations – de-
trended cross-correlation analysis (DCCA), height cross-correlation analysis (HXA) and
detrending moving-average cross-correlation analysis (DMCA) – with a special focus on
short-termmemory bias as well as power-law coherency. We present a broadMonte Carlo
simulation study that focuses on different time series lengths, specific methods’ parameter
setting, and memory strength. We find that each method is best suited for different time
series dynamics so that there is no clear winner between the three. The method selection
should be then made based on observed dynamic properties of the analyzed series.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Power-law cross-correlations have become a popular and frequently analyzed topic in various disciplines covering
seismology [1], hydrology [2], (hydro)meteorology [3,4], biology [5], biometrics [6], DNA sequences [7], neuroscience [8],
electricity [9], finance [10–12], commodities [13,14], traffic [15–17], geophysics [18] and others. The analysis is standardly
based on an estimation of the bivariate Hurst exponent Hxy which is connected to an asymptotic power-law decay of the
cross-correlation function or a divergent (again following a power-law) at origin cross-power spectrum. Specifically, a
power-law cross-correlated process has the cross-correlation function of a form ρxy(k) ∝ k2Hxy−2 for lag k → +∞ and
the cross-power spectrum of a form |fxy(λ)| ∝ λ1−2Hxy for frequency λ → 0+. In a similar way as for the univariate case,
the bivariate Hurst exponent of 0.5 is characteristic for no power-law cross-correlations. Processes with Hxy > 0.5 are then
cross-persistent and they tend to move together whereas for Hxy < 0.5 they are more likely to move in opposite directions.

Most of the literature focusing on power-law cross-correlations is empirical and there are no studies of statistical
properties of the utilized estimators. Here, we try to fill this gap and we present a broad Monte Carlo simulation study
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of performance of three popular bivariate Hurst exponent estimators—detrended cross-correlation analysis [19–21], height
cross-correlation analysis [22] and detrending moving-average cross-correlation analysis [23,14]. Specifically, we focus on
an ability of the estimators to precisely estimate the bivariate Hurst exponent not only under a simple setting of standard
power-law cross-correlations when the bivariate Hurst exponent equals to an average of the Hurst exponent of the separate
processes but also under potential short-term memory bias and under power-law coherency. The paper is organized as
follows. In Section 2,we introduce all three analyzed estimators. In Section 3, theMonte Carlo simulation setting is described.
In Section 4, the results are presented in detail. Section 5 concludes.

2. Methodology

2.1. Detrended cross-correlation analysis

Detrended cross-correlation analysis (DCCA, or DXA) is the most frequently used method for the estimation of the bi-
variate Hurst exponent in the time domain. Podobnik and Stanley [19] construct the method as a bivariate generalization
of the detrended fluctuation analysis (DFA), which is again probably the most popular heuristic method of estimating the
(generalized) Hurst exponent [24–26]. DCCAwas further generalized for themultifractal analysis by Zhou [20] and themul-
tifractal detrended cross-correlation analysis (MF-DXA) was developed. Jiang and Zhou [21] altered the filtering procedure
in MF-DXA by using the moving averages to create the multifractal detrending moving average cross-correlation analysis
(MF-X-DMA). DCCA was also used to construct statistical tests for the presence of long-range cross-correlations between
two series [27–32].

In the DCCA procedure, we consider two long-range cross-correlated series {xt} and {yt} with t = 1, . . . , T . Their
respective profiles {Xt} and {Yt}, defined as Xt =

t
i=1 xi − x̄ and Yt =

t
i=1 yi − ȳ, for t = 1, . . . , T , are divided into

overlapping boxes of length s so that T−s+1 boxes are constructed. In each box between j and j+s−1, the linear fit of a time
trend is constructed so thatwe get Xk,j and Yk,j for j ≤ k ≤ j+s−1. The covariance between residuals in each box is defined as

f 2DCCA(s, j) =

j+s−1
k=j

(Xk − Xk,j)(Yk − Yk,j)

s − 1
. (1)

The covariances are finally averaged over the blocks of the same lengths s and the detrended covariance is obtained as

F 2
DCCA(s) =

T−s+1
j=1

f 2DCCA(s, j)

T − s
. (2)

For the long-range cross-correlated processes, the covariance scales as

F 2
DCCA(s) ∝ s2Hxy . (3)

The estimate of the bivariate Hurst exponent is obtained by the log–log regression on Eq. (3). Similarly to DFA and MF-
DFA, there are several ways of treating overlapping and non-overlapping boxes of length s, compare e.g. Refs. [24,26,33–37].
In the simulations, we use non-overlapping boxes with a step between s equal to 10 due to computational efficiency.

2.2. Height cross-correlation analysis

Kristoufek [22] introduces themultifractal height cross-correlation analysis (MF-HXA) as a bivariate generalization of the
height–height correlation analysis [38–40] and the generalized Hurst exponent approach [41–43], which are often labeled
simply as HHCA and GHE, respectively.

MF-HXA is constructed to analyze the multifractal properties of bivariate series similarly to MF-DXA. We generalize the
q-th order height–height correlation function for two simultaneously recorded series. Let us consider two profiles {Xt} and
{Yt} with time resolution ν and t = ν, 2ν, . . . , ν⌊

T
ν
⌋, where ⌊⌋ is a lower integer sign. For better legibility, we denote

T ∗
= ν⌊

T
ν
⌋, which varies with ν, and we write the τ -lag difference as ∆τXt ≡ Xt+τ − Xt and ∆τXtYt ≡ ∆τXt∆τYt . For

analysis of power-law cross-correlations, i.e. the case when q = 2, the height–height covariance function is then defined as

Kxy,2(τ ) =
ν

T ∗

T∗/ν
t=1

|∆τXtYt | ≡ ⟨|∆τXtYt |⟩ (4)

where time interval τ generally ranges between ν = τmin, . . . , τmax. Scaling relationship between Kxy,q(τ ) and the general-
ized bivariate Hurst exponent Hxy(q) is obtained as

Kxy,2(τ ) ∝ τHxy . (5)
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