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HIGHLIGHTS

e Activator-inhibitor systems with non-local coupling are studied in two dimensions.
e Linear stability analysis of spatial modes gives conditions for Turing instability.
e Numerical simulations are performed to study non-linear saturation of linearly growing modes.
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1. Introduction

One of the key questions in morphogenesis is how a single egg develops into a complex organism. Since all the cells
belonging to the egg share an identical genetic code, some mechanism should account for the fact that the cells eventually
become different from each other [1]. Translating this question into a mathematical language, this means how a spatially
homogeneous pattern evolves into an inhomogeneous one [2]. Other biological examples of pattern formation are the skin
pigmentation of animals, colony formation of small marine animals, and the regular spacing of leaves in a plant [3].

Minimal models aiming to mimic these and other related phenomena consist of two substances: one activator and one
inhibitor. The pattern that is formed results from the interplay between the concentrations of these substances, whose
spatio-temporal evolution is governed by coupled reaction-diffusion systems (activator-inhibitor models). In 1952 Alan
Turing addressed this question from a linear stability analysis and found that a stable homogeneous pattern can become
unstable (the so-called Turing instability) if the inhibitor diffuses more rapidly than the activator. In other words, if the
diffusion coefficient of the inhibitor is greater than that of the activator by a given factor [4].

In activator-inhibitor models this factor can be as large as 10. Since the diffusion coefficient of most ions in water has
nearly the same value (circa10~® m?/s), the production of Turing instability in the laboratory is a difficult task. A major
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progress was the observation that the introduction of a third substance fixed to a matrix in the solution can create a large
difference between the diffusion coefficients of the activator and the inhibitor, since one of them binds reversibly to the
immobile molecule and has an effectively smaller diffusion coefficient, in comparison with the substance which does not
bind [5]. Indeed, the Turing instability has been observed in the Chlorine Dioxide-lodine-Malonic Acid (CDIMA) reaction,
for which the third substance was a starch indicator embedded in a gel matrix [6,7].

The simple existence of a Turing instability, however, is not sufficient per si to explain pattern formation. Since there is a
strong positive feedback on the increase of the activator, there would be an unlimited increase of the latter. The presence of
nonlinearities in the local dynamics, for example due to the inhibitor concentration, saturates the Turing instability into a
stable and spatially inhomogeneous pattern. A model showing this kind of behavior was proposed by Meinhardt and Gierer
and remains a paradigm for studies of activator-inhibitor systems [8-10].

Gierer and Meinhardt have shown that stable inhomogeneous patterns can be formed if the auto-catalytic production
of the activator is short-ranged, while the formation of the inhibitor is long-ranged. In other words, the self-enhancing
process involving the activator is chiefly local, whereas the inhibitor should have a long-range behavior characterized by
rapid spreading, producing activator removal at long distances [11].

The role of the diffusion range is thus of central importance in the dynamics of activator-inhibitor systems. On the other
hand, the mathematical modeling of reaction-diffusion equation involves Laplacian coupling, represented by second-order
spatial derivatives. Such models are derived from a mass balance and Fick’s law (the diffusion flux points from large to small
concentration regions). However, in this class of models, the coupling is nevertheless of a local nature, characterized by
interactions with the nearest-neighbor sites in a discrete lattice.

In this paper we present a more general formulation for the activator-inhibitor system, characterized by a non-local
coupling: a lattice site can interact essentially with all its neighbors. The strength of this coupling is supposed to decrease
with the lattice distance as a power-law, where a range parameter is introduced that can be varied so as to pass from a global
(all-to-all) coupling to a local (nearest-neighbor) one [12-14].

We have previously described one-dimensional chains of nonlinear oscillators coupled according to this type nonlocal
interaction [15]. In that work we found that global couplings spread information among oscillators more rapidly than local
couplings, in such a way that globally coupled oscillators are less likely to present a Turing instability than locally coupled
ones. Moreover, collective phenomena like frequency synchronization [16] are more likely to occur in the global case than
in the local coupling [15].

However the one-dimensional case is rather idealized since spatio-temporal patterns of interest are typically two-
dimensional, such as those observed in skin pigmentation, chemical cells, etc. In the present paper we investigate the
occurrence of a Turing instability in a two-dimensional system of nonlocally coupled oscillators. We used a linear stability
analysis to study the role of the effective range and the diffusion coefficients on the conditions for the occurrence of a Turing
instability [17]. We also performed numerical simulations of the coupled system so as to investigate pattern formation and
its dependence with range and diffusion.

This paper is organized as follows: in Section 2 we introduce the system of non-locally coupled activator-inhibitor
oscillators and explore its limiting cases. Section 3 is devoted to the linear analysis of Fourier mode stability leading
to conditions for the Turing instability involving both the range parameter and diffusion coefficients. In Section 4 we
consider pattern formation for the Meinhardt-Gierer model of activator-inhibitor oscillators with power-law coupling. Our
Conclusions are left to the final section.

2. Non-locally coupled oscillators

Activator-inhibitor systems with local coupling are usually described by coupled reaction-diffusion equations:

ou 2
s = f(u, v) + D, V-u, (m
ov 2
ot =g(u,v) + D, V-, (2)

where u(r, t) and v(r, t) denote the local concentrations of the activator and inhibitor species, respectively. The functions
f(u, v) and g(u, v) stand for the local dynamics of the system, in which the activator auto-catalytically enhances its own
production and the inhibitor suppresses the activator growth [18]. The diffusion constants of the activator and inhibitor
species are denoted, respectively, by D, and D,, and we assume them to be positive-defined.

A spatially homogeneous pattern becomes linearly unstable (Turing instability) if the ratio of the diffusion constants
D, /D, exceeds a threshold value. The nonlinear terms in f and g, however, saturate the linear growth and produce a spatially
inhomogeneous pattern, in which there are domains with high and low values of the activator concentration, with respect
to a uniform background.

In the following, we will consider two-dimensional patterns in the x and y directions, along which we make a coarse-
grained description of the spatial patterns. For a square lattice with local coupling, we link a given site to its nearest neighbors
in both directions. There are N cells of area A2 and the variables are discretized as

uej(t) =ulx =kA,y =jA;t),  v(t) =vx=kA,y =jA;t), (3)
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