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h i g h l i g h t s

• Inferring community structure based on the degree-corrected block model.
• Our algorithm can detect overlapping communities.
• Our algorithm has low time complexity.
• Experiments on synthetic and real-world networks certify the validity of our algorithm.
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a b s t r a c t

Recent research has shown great interest in statistical inference methods for community
detection, not only in models and algorithms but also in the detectability. In this paper we
propose a fast community detection algorithm based on the degree-corrected blockmodel.
By introducing a parameter to select the candidate solutions, our algorithm is able to detect
overlapping communities. Experiments on a range of networks have achieved state-of-the-
art results. Moreover, we show that the algorithm based on the degree-corrected block
model also suffers the detectability limitation, which is in accord with the most recent
research on the detectability threshold.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In real-world networks, vertices act neither in isolation nor simply in whole. They are usually organized in some local
structure called communities in network research. Communities are believed to play the role of functional units within a
networked system [1]. For instance, in the biological domain community detection algorithms have been used to find the
interaction of metabolic networks [2]. As a consequence, community detection has become a fundamental research orien-
tation of network science. For a better understanding of structural and dynamical properties of networks, recent years have
witnessed an explosion of community detection methods, such as graph cut methods based on the principle of maximum
flow andminimum cut [3], hierarchical clustering methods [4], spectral clustering methods [5,6], modularity maximization
methods and its transformations [7–10], random walk methods [11], label propagation methods [12], and so on. Although
community detection methods can be diverse, we have discovered several disadvantages that influence many algorithms.
On the one hand, quite a lot of community detection algorithms have inferior theoretical basis. Therefore, interest has been
attracted to the statistical inference methods for their solid mathematical foundations [13–15], but most inference algo-
rithms cannot detect overlapping communities. On the other hand, the detectability threshold, below which community
detectionwill be unfeasible, has drawnwide attention and is believed to affect all community detection algorithms [15–20].
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However, current research is not general enough to support this belief as most investigations are based on the special case
of the standard stochastic block model [16,18]. The effect of the detectability threshold on other complex models such as
the degree-corrected block model is not clear and needs experiments for research.

In this paperwe focus our attention on community inferencemethods based on the degree-corrected blockmodel. By an-
alyzing the spectral properties and computing the likelihood, our algorithmcan findmany possible partitions of the network.
Then we introduce a parameter to select the candidate solutions from the partitions. Finally, by comparing the candidate
solutions our algorithm is able to infer overlapping community structure. With experiments on the Lancichinetti–
Fortunato–Radicchi (LFR) benchmark networks [21] and some real-world networks, we show that our algorithm can de-
tect overlapping communities efficiently considering both speed and quality. At the same time, we find that the detection
will be unfeasible if the average mixing parameter of the LFR benchmark exceeds a threshold, even though there exists
community structure in theory. The results are in line with what has gotten so far for the detectability threshold research.

2. Degree-corrected block model

At first, wemust define the particular network or networks for study. The standard stochastic blockmodel is most widely
used and has been deep researched for community detection [18,22]. But in this paper we prefer to consider the degree-
corrected block model, which is developed from the standard one. Compared with the standard one, the degree-corrected
block model takes the broad degree distribution of the networks into consideration and gives better performances in most
real-world networks [22]. The model builds a graph of n vertices with different probabilities for edges within and between
communities. Assuming that a network is generated according to thismodel,we canpartition the network into somenumber
of communities by computing the edge probabilities or themodel parameters based on the observed features of the targeted
network. Althoughmost real-world networks may not be generated by the model, this method provides an amazingly good
estimate of the true community structure.

We will here concentrate on the case of two communities in a network based on the degree-corrected block model.
Usually, the edges in themodel are created independently at randomwith probability pU for vertices in the same community
and pV for vertices between different communities. Herewe employ anothermode to create the edges, which is based on the
Poisson distributionwithmean λU for edges in the same community andmean λV for edges between different communities.
Actually, the randommode and the Poisson mode are extremely similar because the edges in real-world networks are very
sparse, which has been well studied in the research of small-world [23] and scale-free [24] networks. We prefer the Poisson
mode because its analysis is more concise.

Considering a network G, we denote by A the adjacency matrix of the network, and its elements Aij = 1 if vertices i and j
in G are connected and Aij = 0 otherwise. Self-edges are not discussed in this paper, so Aii = 0. ci denotes the community to
which vertex i belongs. Given the community memberships c and the Poisson parameters λ, we can denote the likelihood
of generating a particular network G by

P (G|c, λ) =


i<j


didjλij

Aij
Aij!

e−didjλij , (1)

where didjλij is the expected number of edges between vertices i and j, and di is the degree of vertex i. didjλij can be either
λU or λV , depending onwhether the edges are in the same community or in the different communities. Then we can rewrite
Eq. (1) as

P (G|c, λ) =
λU

bU

bU !
e−λU ·

λV
bV

bV !
e−λV , (2)

where bU and bV are the observed numbers of edges within and between communities respectively for a given partition of
the network. In fact, maximizing the likelihood and maximizing its logarithm are equivalent, but the latter is easier to work
with. We neglect an unimportant additive constant and obtain the log of likelihood of the model.

Q = bU ln λU + bV ln λV . (3)
We can estimate the most likely values of λU and λV with bU and bV by

λU =
2bU

d21 + d22
, λV =

bV
d1d2

, (4)

where d1 and d2 are the sums of the degrees of the vertices in the two communities. Substituting Eq. (4) back into Eq. (3)
gives the object function which should be maximized to find the community structure.

Q = bU ln
2bU

d21 + d22
+ ln

bV
d1d2

. (5)

As the possible partitions are too many in a network, the maximization of Eq. (5) faces high computational cost and low
speed. So we just come back to Eq. (1) and get its logarithm directly, assuming that λU and λV have been known.

R = ln P (G|c, λ) =


i<j


Aij ln didjλij − didjλij − ln Aij!


. (6)
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