
Physica A 419 (2015) 437–443

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Majority-vote model on a dynamic small-world network
Thomas E. Stone a,b,∗, Susan R. McKay b

a Husson University, Bangor, ME, 04401, United States
b Department of Physics and Astronomy, University of Maine, Orono, ME, 04469, United States

h i g h l i g h t s

• We study the robustness of social consensus to noise via the majority-vote model with noise on a dynamic small-world network.
• The critical behavior of the majority-vote model on a 2D dynamic small-world network is determined.
• Findings are consistent with the conjecture that dynamic and static network model share a universality class.

a r t i c l e i n f o

Article history:
Received 13 May 2014
Received in revised form 4 September 2014
Available online 18 October 2014

Keywords:
Majority-vote model
Dynamic small-world network
Universality
Finite-size scaling

a b s t r a c t

Dynamic small-world networks combine short-range interactions within a fixed neighbor-
hood with stochastic long-range interactions. The probability of a long-range link occur-
ring instead of a short-range one is a measure of the mobility of a population. Here, the
critical properties of the majority-vote model with noise on a two-dimensional dynamic
small-world lattice are investigated viaMonte Carlo simulation and finite size scaling anal-
yses. We construct the order–disorder phase diagram and find the critical exponents asso-
ciated with the continuous phase transition. Findings are consistent with previous results
indicating that a model’s transitions on static and dynamic small-world networks are in
the same universality class.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The majority-vote model (MVM) with noise [1,2] is one way to study the robustness of social consensus to noise (for this
and other social dynamics models see the review in Ref. [3]). In the original formulation [1], each site on a square lattice
can take one of two opinions, perhaps Democrat/Republican, yes/no, or up/down. In an update step, a randomly chosen site
looks to its four orthogonally adjacent neighbors and adopts the majority opinion with probability 1 − q and the minority
opinion with probability q, where q quantifies the noise. (If there is no minority, the site adopts each opinion with probabil-
ity 1/2.) It was found that the lattice was disordered for q > qc but ordered for q < qc , where the critical noise parameter
was determined numerically to be qc = 0.075(1). This order–disorder transition piqued the interest of physicists, who have
extensively studied the critical behavior of this transition on a number of topologies [4–13], as well as with a variety ofmod-
ifications, such as different classes of agents [14], diffusion [15], damage spreading [16], and more than two opinions [17].

The critical behavior and, in particular, the universality associated with this model remain areas of active research. The
original model [1] and a generalized version of that work [2] were both shown to fall into the equilibrium Ising universality
class via the usual critical exponents β/ν, γ /ν, and 1/ν. However, of the other models mentioned above [4–17], only
[14,16,17] are in the Ising class—the others tend to be in distinct classes governed by the underlying topology. For example,
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an intriguing instance was the work by Campos et al. [6], which involved placing the MVM dynamics on top of a 2D small-
world network. The small-world network [18] is very relevant from a social point of view, as it combines both short-range
and long-range interactions, which is more realistic than either a regular lattice or a mean-field approach. It was shown in
Ref. [6] that the critical exponents β/ν and γ /ν vary as a function of the concentration of long-range links. Here, we extend
this previous work to a dynamic small-world (DSW) network in which the long-range links change with time, sometimes
called a multiscale neighborhood model [19]. Specifically, our objective here is to characterize the order–disorder phase
transition of the MVM with noise on a 2D DSW network. To this end, we construct the phase diagram in the p − q plane,
where p is a parameter that captures the amount of long-range interactions, and determine the critical exponents β/ν, γ /ν,
and 1/ν as functions of p.

2. Majority-vote model with noise

In the majority-vote model with noise, the ith site possesses an Ising spin variable σi = ±1. During an update step, a
random site is chosen and the opinions (spins) of its neighbors are determined. With probability 1 − q the site aligns with
the majority while with probability q it aligns with the minority (hence q is usually called the noise parameter). The spin
flip probability is then given by

w (σi) =
1
2
[1 − (1 − 2q) σiS(x)] (1)

where x is the sum of the spin variables of the neighbors to site i and S(x) = {−1, 0, 1} for {x < 0, x = 0, x > 0}. A
neighbor of the ith site is any other site that is connected to it in some fashion, which depends on the particular topology
under consideration.

It is constructive to review themean-field (MF) solution to thismodel since it indicates the presence of an order–disorder
phase transition, and also because it will be a limiting case to the model under consideration in this work. First, define the
usual site magnetization to be

m =
1
N

N
i=1

σi (2)

where N is the total number of sites. From master equation considerations [20,21] we can write

d
dt

⟨σi⟩ = −2⟨σiw(σi)⟩ (3)

for the time evolution of the average site magnetization. Now, for a coordination number of 4, S(x) can be expressed as

S (x) =
1
8
(σ1 + σ2 + σ3 + σ4)(3 − σ1σ2σ3σ4) (4)

where σj refers to the jth neighbor of site i [20]. Letting m = ⟨σi⟩ and substituting Eqs. (1) and (4) into Eq. (3) yields the
mean-field time evolution of the magnetization

dm
dt

= −m +
m
2

(1 − 2q) (3 − m2) (5)

m∗
= 0 is always a fixed point of this equation, whilem∗

= ±


1−6q
1−2q are fixed points for q < 1/6 only. The derivative of the

RHS of Eq. (5) is always negative for the latter fixed points, whereas it is negative for them∗
= 0 fixed point when q > 1/6

but positive for q < 1/6, indicating a supercritical pitchfork bifurcation at qc = 1/6 [22]. Thus, in the mean-field limit we
expect a order–disorder continuous phase transition at a critical noise of qc = 1/6.

This order–disorder transition has been explored on a number of different topologies, including the square lattice [1,2,15],
random graphs [4,5], scale-free networks [8,9], and small-world networks [6,7]. In this work we study the critical properties
of this transition on a dynamic small-world network. DSW networks are similar to the more familiar static small-world
(SSW) networks in that both contain a mixture of short and long range interactions that allow tuning between a completely
regular lattice and an essentially random one. However, DSW networks generally have a fixed short-range neighborhood
and a stochastic long-range neighborhood, with a rule specifying how a site will choose its links on a given time step. See
Refs. [19,23–27] for a number of DSW formulations. While DSW networks capture the long-range/short-range essence of
SSW networks and are a valid model in their own right, they can allow for significant computational speedup since large
sparse adjacency matrices or link lists are avoided. Motivated by the multiscale neighborhood model presented in Ref. [19],
we implement the MVMwith noise dynamics on a DSW 2D square lattice as follows:
(i) Pick a random site to update, say the ith site.
(ii) Look at that site’s four nearest neighbors successively.With probability 1−p use the spin of the nearest neighbor under

consideration to update the sum of neighboring spins in Eq. (1). With probability p instead use the spin of a randomly
chosen site to update the sum.

(iii) Flip σi in accordance with the spin flip probability w(σi) given in Eq. (1).
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