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h i g h l i g h t s

• The escape rate for the power-law distribution in low-to-intermediate damping is studied.
• An expression of the escape rate for the power-law distribution is derived.
• The extra current and improvement of the absorbing boundary condition are discussed.
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a b s t r a c t

Escape rate in the low-to-intermediate damping connecting the low damping with the
intermediate damping is established for the power-law distribution on the basis of flux
over population theory. We extend the escape rate in the low damping to the low-to-
intermediate damping, and get an expression for the power-law distribution. Then we
apply the escape rate for the power-law distribution to the experimental study of the
excited-state isomerization, and show a good agreement with the experimental value. The
extra current and the improvement of the absorbing boundary condition are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1940, Kramers proposed a thermal escape of a Brownian particle out of a metastable well [1], and according to the
very low and intermediate to high dissipative coupling to the bath, he yielded three explicit formulas of the escape rates in
the low damping, intermediate-to-high damping (IHD) and very high damping respectively, all of which has been received
great attentions and interests in physics, chemistry, and biology etc. [2,3]. In the IHD region, he got an expression of escape
rate in the infinite barrier (i.e. the barrier height EC ≫ kBT ) and successfully extended it to high damping region; in the
low damping region, he derived a rate in energy diffusion regime; as for the intermediate region, he had not given an
expression, which was known as Kramers turnover problem. Later, plenty of researches had been continued. Carmeli et al.
derived an expression for the escape rate in the Kramers model valid for the entire friction coefficient by assuming that
the stationary solutions of the low damping and moderate-to-high damping overlap in some region of phase space and are
equal to each other (see Eq. (17) in Ref. [4]); Büttiker et al. extended the low damping result to the larger range of damping
by reconsidering absorbing boundary condition at the barrier and introducing an extra flux JE>EC (see Eq. (3.11) in Ref. [5]);
Pollak et al. got a general expression in non-Markov processes (see Eq. (3.33) in Ref. [6]); Hänggi et al. introduced a simple
interpolation formula (see Eq. (6.1) in Ref. [7]) for the arbitrary friction coefficient. However, it has been noticed that the
above bridging expressions yield results that agree roughly towithin≤ 20%with the numerically precise answers inside the
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turnover region; in higher dimensions and for the case of memory friction, these interpolation formulas may eventually fail
seriously [7]. At the same time, more attentions need to be paid that the systems studied in above theories are all in thermal
equilibrium and the distributions all follows a Maxwell–Boltzmann (MB) distribution, ρeq (E) = ρ0e−E/kBT , where E is the
energy, ρ0 is the normalization constant, kB is the Boltzmann constant, and T is the temperature. It should be considered
that a complex system far away from equilibrium has not to relax to a thermal equilibrium state with MB distribution, but
often asymptotically approaches to a nonequilibrium stationary-state with power-law distributions. In these situations, the
Kramers escape rate should be restudied.

In fact, plenty of the theoretical and experimental studies have shown that non-MB distributions or power-law
distributions are quite common in some nonequilibrium complex systems, such as in glasses [8,9], disordered media
[10–12], folding of proteins [13], single-molecule conformational dynamics [14,15], trapped ion reactions [16],
chemical kinetics, and biological and ecological population dynamics [17,18], reaction–diffusion processes [19], chemical
reactions [20], combustion processes [21], gene expression [22], cell reproductions [23], complex cellular networks [24],
small organic molecules [25], and astrophysical and space plasmas [26]. The typical forms of such power-law distributions
include the noted κ-distributions in the solarwind and space plasmas [26,27], the q-distributions in complex systemswithin
nonextensive statistics [28], and the α-distributions noted in physics, chemistry and elsewhere like P(E) ∼ E−α with an
index α > 0 [16,19,20,25,29]. These power-law distributions may lead to processes different from those in the realm
governed by Boltzmann–Gibbs statistics with MB distributions. Simultaneously, a class of statistical mechanical theories
studying the power-law distributions in complex systems has been constructed, for instance, by generalizing Boltzmann
entropy to Tsallis entropy [28], by generalizingGibbsian theory [30] to a systemaway from thermal equilibrium, and so forth.
Recently, a stochastic dynamical theory of power-law distributions has been developed by means of studying the Brownian
motion in a complex system [31,32], which lead the new fluctuation–dissipation relations (FDR) for power-lawdistributions,
a generalized Klein–Kramers equation and a generalized Smoluchowski equation. Based on the statistical theory, one can
generalize the transition state theory (TST) to the nonequilibrium systemswith power-law distributions [33]; one can study
the power-law reaction rate coefficient for an elementary bimolecular reaction [34], the mean first passage time for power-
law distributions [35], and the escape rate for power-law distributions in the overdamped systems [36].

In this work, the Kramers escape rate for power-law distributions in the low-to-intermediate damping (LID) will be
studied. The paper is organized as follows. In Section 2, a generalized escape rate in the LID region is obtained for the power-
law distribution and compared with the results of the low damping Kramers’ escape rate, and then we apply our theory to
the excited-state isomerization of 2-alkenylanthracene in alkane. Further discussion of extra current is given in Section 3,
and finally the conclusion is made in Section 4.

2. Escape rate for the power-law distribution in the LID

We have mentioned in the introduction that Büttiker et al. got a Kramer’s escape rate in a wider frictional range on
the assumption that the system follows the thermal equilibrium distribution. However, for the low damping systems, it is
always nonequilibrium. Because the coupling to the bath is veryweak and the time to reach thermal equilibrium is very long
in low damping systems, the escape of particles may be established before thermal equilibrium, and thus nonequilibrium
effects dominate the process [37]. Thereby, the nonequilibrium distribution, such as κ-distribution, may be used here.

Low damping or small viscosity means that the Brownian forces cause only a tiny perturbation in the undamped energy,
so it is helpful to replace the momentum by the energy. In the energy region, the Klein–Kramers equation can be written [3]
as
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where ω is the angular frequency of oscillation frequency and it satisfies ω (I) = 2πdE/dI , D is the diffusion coefficient, γ
is the friction coefficient, I is the action defined as I (E) =


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Take Eq. (2) into Eq. (1) and the current J becomes
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whereρs is the stationary-state distributionρs = Z−1 exp

−
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, and Z is the normalization constant. In the previous

work, we derived Kramers’ escape rate in the low damping for the power-law distribution, and showed that the stationary-
state distribution is the power-law κ-distribution [31],

ρs (E) = Z−1 (1 − κβE)
1/κ
+ , (4)
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