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h i g h l i g h t s

• We simulate a row of interacting cars using a cellular automaton model.
• The jammed state dynamics is analyzed in a sequence of synchronized traffic lights.
• Small density jammed states show the expected scaling laws close to the resonance.
• A stochastic resonance-like behavior is found when we include velocity perturbations.
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a b s t r a c t

We simulate traffic in a city by means of the evolution of a row of interacting cars,
using a cellular automaton model, in a sequence of traffic lights synchronized by a ‘‘green
wave’’. When our initial condition is a small density jammed state, its evolution shows
the expected scaling laws close to the synchronization resonance, with a uniform car
density along the street. However, for an initial large density jammed state, we observe
density variations along the streets,which results in the breakdownof the scaling laws. This
spatial disorder corresponds to a different attractor of the system. As we include velocity
perturbations in the dynamics of the cars, all these attractors converge to a statistically
equivalent system for all initial jammed densities. However, this emergent state shows
a stochastic resonance-like behavior in which the average traffic velocity increases with
respect to that of the systemwithout noise, for several initial jammed densities. This result
may help in the understanding of dynamics of traffic jams in cities.

© 2014 Elsevier B.V. All rights reserved.

Transport problems represent an interesting field due to its high social impact and its emergent properties [1–4]. Of
particular importance are traffic and pedestrian flows, that have been studied extensively in the past [5–10]. In these
systems, behaviors such as jamming transitions and chaos have been found to be common [11–13]. Here, we consider the
traffic in a city as represented by a number of interacting cars moving through a sequence of traffic lights, a system which
has many nontrivial features [14–21].

For example, Varas et al. [21] showed that the critical behavior found around the synchronization resonances [11] is
robust, not only with respect to the street length sequence, but also with respect to the car density for an unjammed initial
condition. The study of the systemwas characterized for two traffic light phase behaviors: (a) synchronized phases [14], and
(b) phases linked by a green wave [11]. Resonance occurs when (a) the traveling time between traffic signals is the same
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Fig. 1. Possible system state, with a car stopped at a traffic light with a long traffic jam ahead, in which case the car will not move, even if the signal is
green. A schematic representation of the state is shown in the lower part of the figure.

as the period of the signals in the synchronized phase strategy, and (b) when the average speed of the car is the same as
the green wave velocity in the green wave strategy. In this manuscript we will consider the green-wave synchronization
resonances, due to its popular applicability in cities. These resonances are the boundary between two different dynamics,
but as was shown numerically and analytically for a single car [11,21], the behavior close to the resonance does not depend
on the finite braking and accelerating capabilities of the cars. Recently, the very complex spatiotemporal phenomena
of self-organization that occur under green-wave propagation have been studied in detail using a discrete version of
the Kerner–Klenov stochastic three-phase microscopic model for large and small flow rates [22]. The complex behavior
determined some of the physical effects associated with green-wave propagation. However, that model does not stress
explicitly the coupling effect of the traffic light on the car flow, so that the dynamics close to the synchronization resonances
was not studied. In a series of published manuscripts, where we have considered the very fine details of the effect of the
traffic lights on the car evolution by including continuous accelerating and braking capacities, we have shown that close to
the synchronization resonance the car behavior does not depend on the intricacies of the acceleration [11,15]. Hence, the
purpose of present manuscript is to investigate how the dynamics close to the synchronization resonance changes as we
increase the initial number of interacting cars that jam the system. For that purpose we simulate the dynamics of a number
of cars by a simple cellular automaton (CA)model. A large number of CA variants have been proposed to simulate city traffic,
including many details of the car dynamics [5]. But, for the purpose of this work, we concentrate on a very simplified CA
model since, as mentioned above, the critical behavior close enough to the synchronization resonance should be more or
less insensitive to these details (e.g., finite braking and accelerating capabilities, etc. [11,14]).

We will show below that this deterministic CA model displays different behavior close to resonance, depending on the
initial jammed density. The different behaviors, representing different attractors of the system, are produced by the spatial
variation of the jammed density at each traffic light. As we introduce velocity perturbations in the system, we note that the
average velocity increases with respect to the system without velocity perturbations, in a type of stochastic resonance that
is produced by the time average homogenization of the spatial variation of the jammed density at each traffic light. This
stochastic resonance is similar, although not equal, to the standard stochastic resonance [23,24] observed in the amplifica-
tion of signals by noise [25], bi-stable nonlinear systems [26,27], climate transitions [28–30], biological systems [31,32], etc.

Following Ref. [21], we consider a street of length Ltot with Ns traffic lights. The length Ln between the nth and (n + 1)th
traffic light is divided in NLn = Ln/ℓ cells of length ℓ. The time it takes a car to move to the next cell, namely τ , is the
automaton evolution time step. A car will move to the next cell only (a) if no other car is stopped in the next cell; and (b) if
the current cell has a traffic light, it must be in green and the next two cellsmust be empty, so that the drivers avoid stopping
at the intersection at the following cell.

The only possible values for the velocity of the cars are vmax = ℓ/τ , which corresponds to one cell per time step, and 0.
We are also assuming that the cars cannot pass each other. Fig. 1 shows a schematic representation of a state of the system
at a particular time. Occupied cells are represented by a black block. An arrow over the cell boundary represents a traffic
light.

The switching of the nth traffic light, from green to red and vice-versa, is given by the periodic function fn(t) =

sin(ωnt + φn). When fn(t) > 0 the traffic light is green, and the cars at the intersection can move to the next unoccupied
cell. If fn(t) < 0 a red traffic light stops themotion of the vehicles approaching to it. Here,ωn represents the frequency of the
nth traffic light, although for simplicity we are considering that all traffic lights have the same period T , i.e. ωn = 2π/T ∀n.
For the case of the green wave strategy studied here, a green pulse propagates through the sequence of traffic lights with
velocity vwave, so that φn = −(ω/vwave)

n
j=0 Lj. We define α = vmax/vwave, to compare the green wave speed with the cars

maximum speed. If we take that (a) the distance between traffic lights is about L = 200 m, representative of the Alameda
Av. in Santiago, Chile; (b) the length of each cell is ℓ = 10 m; the cruising velocity is vmax = 10 m/s (36 km/h); then each
time step corresponds to τ = 1 s. Let us note that these values are consistent with the car having equal accelerating and
braking capabilities of a = v2

max/2ℓ = 5 m/s2. For the traffic light period we will use T = 60 s.
The dynamics described above corresponds to a nontrivial modification of the car model presented in Ref. [21] as we

consider an initial jammed situation that shows more complexity than the empty road analyzed in that reference. From
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