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a b s t r a c t

The lattice hydrodynamic model is not only a simplified version of the macroscopic
hydrodynamic model, but is also closely connected with the microscopic car following
model. The modified Korteweg-de Vries (mKdV) equation about the density wave in
congested traffic has been derived near the critical point since Nagatani first proposed
it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not
been studied, which has been investigated in detail in the car following model. So we
devote ourselves to obtaining the KdV equation from the lattice hydrodynamic model
and obtaining the KdV soliton solution describing the traffic jam. Numerical simulation
is conducted, to demonstrate the nonlinear analysis result.

© 2009 Published by Elsevier B.V.

1. Introduction

Generally speaking, traffic flow is divided into three distinct regions: the stable region out of the coexisting curve, the
metastable region between the coexisting and neutral stability lines, and the unstable region within the neutral stability
line. The Burgers, KdV and mKdV equations describe the density waves appearing in the three distinct regions respectively,
which are studied in full according to the microscopic car following models [1–7].
Recently, Nagatani [8,9] proposed the lattice hydrodynamic model. It is a simplified version of the macroscopic

hydrodynamic model, and also incorporates the idea of the microscopic optimal velocity model. The governing equations
are described as

∂tρ + ρ0∂x(ρv) = 0, (1)
∂t(ρv) = aρ0V (ρ(x+ δ))− aρv, (2)

where ρ0 is the average density, and a is the sensitivity of a driver; ρ(x + δ) is the local density at position x + δ at time
t; δ represents the average headway, which means δ = 1/ρ0; Local density ρ(x + δ) is related to the inverse of headway
h(x, t) : ρ(x+ δ) = 1/h(x, t). The right-hand side of Eq. (2) expresses the tendency of traffic flow ρv at a given density to
relax to some natural average flow ρ0V (ρ(x+ δ)), which is similar to the optimal velocity model proposed by Bando [10]

d2xj(t)
dt2

= a
[
Ṽ (1xj(t))−

dxj(t)
dt

]
. (3)

The idea is that a driver adjusts the car velocity according to the observed headway1xj(t), which corresponds to the inverse
of the local density h(x, t).
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The continuity equation (2) is modified with dimensionless space x. Let x̃ = x/δ, and x̃ is indicated as x hereafter. As
we know, the lattice hydrodynamic model is presented as three types. Model A is similar to the second order differential
equation in the car following model proposed by Bando [10]:

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0, (4)

∂t(ρjvj) = aρ0V (ρj+1)− aρjvj, (5)

and Model B is similar to the first order differential equation in the car following model given by Newell [11]. Including
Eq. (4), the current equation is

ρj(t + τ)vj(t + τ) = ρ0V (ρj+1). (6)

Model C is the difference form of the model B, which is similar to that in the car following model put forward by
Nagatani [12]. The system consists of Eq. (6) and the following continuity equation

ρj(t + τ)− ρj(t)+ τρ0(ρjvj − ρj−1vj−1) = 0 (7)

where the delay time τ is the inverse of the sensitivity a, j denotes site j on the one-dimensional lattice, and ρj(t), vj(t)
represent the local density and the local average velocity on site j at time t respectively.
The car following models [2,3] and the lattice hydrodynamic models [15,16] have many similar properties, such as that

the stable region could be enlarged by taking into account the next-nearest-neighbor interaction [2,15], and based on the
intelligent transport system, only the information of three vehicles/sites ahead is enough for cooperative driving [3,16]. In
the aspect of the density wave, the microscopic car following model has been studied extensively and thoroughly according
to the KdV equation, the Burgers equation and the mKdV equation. But for the macroscopic lattice hydrodynamic model,
only mKdV equation was investigated frequently [8,9,15–17], and the evolution of the density wave was not carried out by
numerical simulation.
In this paper, based on the original lattice hydrodynamic model A, B and C, we make the conclusion as to the three types

of models, through linear and nonlinear methods. The KdV equations are derived near the neutral stability lines by using
the reductive perturbation method, and the corresponding soliton solutions describing the density waves are obtained.
Numerical simulation is carried out to validate the nonlinear result, which is not given before.

2. Linear stability analysis

The linear stability analyses are made for the three types of lattice hydrodynamic models. It is obvious that the uniform
traffic flow with constant density ρ0 and constant optimal velocity V (ρ0) is the steady state solution for the three models,
given as

ρj(t) = ρ0, vj(t) = V (ρ0). (8)

Suppose yj(t) to be a small deviation from the steady state density of the jth vehicle

ρj(t) = ρ0 + yj(t). (9)

Eliminating the velocity from the three systems (Eq. (4)–(7)), which lead to

∂2t ρj(t)+ a∂tρj(t)+ aρ
2
0

[
V (ρj+1(t))− V (ρj(t))

]
= 0, (10)

∂tρj(t + τ)+ ρ20
[
V (ρj+1(t))− V (ρj(t))

]
= 0, (11)

ρj(t + 2τ)− ρj(t + τ)+ τρ20
[
V (ρj+1(t))− V (ρj(t))

]
= 0. (12)

Substituting Eqs. (8)–(9) into Eqs. (10)–(12) and linearizing it yield

∂2t yj(t)+ a∂tyj(t)+ aρ
2
0V
′(ρ0)1yj(t) = 0, (13)

∂tyj(t + τ)+ ρ20V
′(ρ0)1yj(t) = 0, (14)

yj(t + 2τ)− yj(t + τ)+ τρ20V
′(ρ0)1yj(t) = 0, (15)

where V ′(ρ0) = dV (ρj)/dρj|ρj=ρ0 , and1yj(t) = yj+1(t) − yj(t). Expanding yj in the Fourier-modes: yj(t) = exp(ikj + zt),
we have

z2 + az + aρ20V
′(ρ0)(eik − 1) = 0, (16)

zezτ + ρ20V
′(ρ0)(eik − 1) = 0, (17)

e2zτ − ezτ + τρ20V
′(ρ0)(eik − 1) = 0. (18)

Expanding z = z1(ik)+ z2(ik)2+· · · and inserting it into Eqs. (16)–(18), the first- and second-order terms of ik are obtained
respectively.



Download English Version:

https://daneshyari.com/en/article/974719

Download Persian Version:

https://daneshyari.com/article/974719

Daneshyari.com

https://daneshyari.com/en/article/974719
https://daneshyari.com/article/974719
https://daneshyari.com

