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h i g h l i g h t s

• Wemodel a graph grown by the addition of vertices and edges at rates one and δ respectively.
• Model parameter determines the degree of preferential attachment for new edges.
• Preferential attachment leads to a power-law degree distribution.
• Increasing preference for high degree vertices accelerates emergence of a giant component.
• Positive assortative mixing reported in the case of no preference is lost in the power-law regime.
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a b s t r a c t

We reintroduce the model of Callaway et al. (2001) as a special case of a more general
model for random network growth. Vertices are added to the graph at a rate of 1, while
edges are introduced at rate δ. Rather than edges being introduced at random, we allow
for a degree of preferential attachment with a linear attachment kernel, parametrised by
m. The original model is recovered in the limit of no preferential attachment, m → ∞.
As expected, even weak preferential attachment introduces a power-law tail to the degree
distribution. Additionally, this generalisation retains a great deal of the tractability of the
original alongwith a surprising range of behaviour, although keymathematical features are
modified for finite m. In particular, the critical edge density, δc which marks the onset of a
giant network component is reducedwith increasing tendency for preferential attachment.
The positive degree–degree correlation introduced by the unbiased growth process is offset
by the skewed degree distribution, reducing the network assortativity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ubiquity of power-law degree distributions, and what came to be called scale-free networks, has enjoyed a wealth of
study across a vast range of natural systems. In this regime of network, we find extremely well connected vertices, far more
than could exist if connectivitywere Gaussian. The vast disparity of connectivity leads to a relatively large fraction of vertices
with more connections than the average; for sufficiently skewed distributions, power-laws with an exponent γ < 3, the
variance in the vertex degrees diverges and we say there is no typical or characteristic vertex degree. Examples include
networks of scientific collaborators [1] and Hollywood co-stardom [2] along with transport networks such as airways [3]
and roads [4]. Further examples of scale-free networks, and power-laws elsewhere in the natural world and human society
along with in-depth discussion can be found in reviews by Mitzenmacher [5] and Newman [6].

While these networks are clearly mechanistically distinct, the fact that they share a characteristic degree distribution
prompted a great deal of research. Barabási [2] began to answer the question of the origin of these commonalities,
demonstrating that though a process of preferential attachment whereby newly added vertices are connected to existing
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vertices with probability proportional to their number of connections, the scale-free degree distribution may emerge
without any furthermechanism. In contrast, Callaway et al. [7] introduces aminimalmodel of network growth in the absence
of preferential attachment. Along with a number of interesting mathematical properties, they note that the model history
results in older vertices tending to be more highly connected, purely due to having existed longer than younger vertices.
Furthermore, these tend to be connected amongst themselves, introducing positive degree–degree correlations, known as
the network’s assortativity.

We aim to reintroduce the randomly grownnetwork of Callaway et al. [7] as a special instance of amore general algorithm
for random growth by allowing either or both ends of added links to attach preferentially to varying extents via a linear
attachment kernel. Mathematically, this introduces complications, though much of the tractability of the original model is
retained. However, a number of key observations, particularly the associative mixing are apparently disrupted. We begin
from a single vertex and iteratively add a new vertex along with a random number of edges from some distribution with
mean rate δ. While Callaway et al. [7] consider only δ ≤ 1, this can in principle be very much larger. New edges join a
random pair of existing vertices with probability proportional to their weight, made up of contributions from their existing
connections k and a fixed constant m. k provides the preference for adding connections to already well connected nodes
while m offsets this by providing a chance to connect randomly. In our terms, the probability Pi,k that vertex i is linked to
vertex j by a newly added link is given by

Pi,j =
(ki + m)(kj + m)

t
n=1

(kn + m)

(1)

where k is the vertex degree, and m parametrises the preference for the new edge to join vertices with a high degree,
modifying the resulting network structure as illustrated in Fig. 1. This model differs significantly from other models of
preferential attachment in that networks produced are generally sparse except for high δ and there is no distinction made
between the existing and newly added vertices (as opposed to the fully connected network of Barabási [2], where newly
added vertices are always connected).

The analysis which follows is significantly simplified by considering the model case where both ends of a new link have
the same bias towards already connected verticesm. The model may be further generalised by allowing both ends of a new
edge to have a different preference for connecting high-degree vertices, m → m1,m2. However for this simple case shows
qualitatively similar properties eitherway andweproceedwith both ends of newedges sharing the samepreference. At each
stage, we compare analytical progress to network properties extracted from a numerical simulation of this type of graph.

2. Degree distribution

To begin the analysis of this model we follow tradition and derive the steady-state degree distribution for this type of
grown graph. The master equation approach gives the expected change in number of vertices with degree k, Dk,t , between
time t and t + 1. The special case of D0,t is simple since we add isolated vertices at a rate of 1, and find they are connected
at rate

E

D0,t+1 − D0,t


= 1 −

2δm
t(m + 2δ)

D0,t (2)

assuming sufficient time has passed such that δ ≪ t . Similarly, the same formulation is applied more generally to higher
degree vertices. The change in Dk,t is the difference between the expected number of vertices with degree k− 1 which gain
an edge, and those of degree kwhich gain an edge.

E

Dk,t+1 − Dk,t


=

2δ(k + m − 1)
t(m + 2δ)

Dk−1,t −
2δ(k + m)

t(m + 2δ)
Dk,t . (3)

From numerical simulation, we find for sufficiently large t , the frequency distribution Dk increases linearly with simulation
time. As such, we assume the graph grows to a steady state where Dk is related to the steady state degree distribution, dk, by

Dk,t = dkt. (4)

This expression can be shown to be appropriately normalised since as stated, model time t is exactly equal to the number
of vertices,


k Dk. We seek a solution to Eq. (3) of this form by substituting Eq. (4) into Eq. (3)

dk =
k + m − 1

m
2δ + k + m + 1

dk−1. (5)

Similarly for Eq. (2)

d0 =
m + 2δ

m + 2δm + 2δ
. (6)
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