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h i g h l i g h t s

• We construct a stochastic cellular automaton model for the Ebola virus.
• Basic dynamical rules governing viral spread are adapted to the Ebola setting.
• Rigorous results are given about the dynamics.
• Model output simulates the timeline of the infection and captures fatality rates.
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a b s t r a c t

We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola
virus (EBOV). We make substantial modifications to an existing SCA model used for HIV,
introduced by others and studied by the authors. We give a rigorous analysis of the
similarities betweenmodels due to the spread of virus and the typical immune response to
it, and the differences which reflect the drastically different timing of the course of EBOV.
We demonstrate output from the model and compare it with clinical data.
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1. Introduction 1

Q2

Ebola virus (EBOV) is a filovirus that causes severe illness in most humans who are exposed to it. A filovirus is a negative, 2

single-stranded RNA virus whose genome is configured linearly, which differs from a retrovirus such as HIV (human 3

immunodeficiency virus) in its method of replication [1,2]. On the other hand, similarities between these two types of 4

viruses, especially in terms of their negative effect on the immune system, have been studied for some time [3]. In October 5

of 2014 theWorld Health Organization (WHO) Ebola Response Team published a report estimating the fatality rate of Ebola 6

Virus Disease (EVD) to be around 70.8% [4], but hospitalized patients during the recent outbreak inWest Africa had a slightly 7

lower fatality rate. Due to the difficulty in gathering accurate data, differences among patient care, and individual responses 8

to treatment, there is a wide range of fatality rates reported, from 25% to 90% [5]. 9

Because of the extreme virulence of EBOV, autopsies and handling of fluids of infected patients are limited and avoided 10

when possible [5], making mathematical and computer models of the disease a particularly valuable tool. In Ref. [6], a 11

computermodel first introduced in 2001 by Zorzenon dos Santos and others [7] for HIV,was amended and studied rigorously 12

to show precisely which viral dynamics were being modeled, how the set of infected cells spreads, and how immune 13

response and drug therapy affects the dynamics. The authors of Ref. [6] extracted some results that apply independently 14
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of the virus in question and showed how varying parameters changed the model. The spread of HIV, as well as the effect1

of administering drugs, has been modeled by SCAs (see for example, Refs. [6,8–10] and references therein). In Refs. [11,10]2

the later chronic stages of viral infection were isolated from the model and studied further; these studies involved Markov3

processes reflecting randomness in the development and control of a chronic viral condition. The EBOV time scale is much4

shorter and there seems to be no chronic residual disease that has been observed in survivors of the acute illness up to now.5

Therefore the early viral dynamics control the progression and outcome. In this paper we adapt the early stages of the viral6

dynamics model in Ref. [6] to EBOV.7

A cellular automaton (CA) model is an agent-based model, a computer simulation of the process of the viral spread in an8

organ based on simple rules. For example, a rule that all viral models have in common is that if a cell is contiguous to an9

actively infected cell, it becomes infected in the next time step. An SCA uses a small number of simple rules chosen randomly10

using data-based probabilities, to emulate differences in immune responses to viral spread. By running an SCA simulation,11

we achieve a variety of outcomes from a single model.12

In this paper, wemodify the original (HIV) SCAmodel to use parameters and cellular automata rules specific to the spread13

of EBOVwithin an individual organ.While much is still unknown about EBOV, we can use features of existingmodels for the14

general properties of viral spread and the body’s typical immune response to it. We change some of the salient features of15

the HIVmodel as needed for this setting. As of thiswriting, it is believed that viralmutation occursmuch lesswith EBOV than16

with HIV though the possibility that EBOV mutations might affect future diagnosis and treatment is being studied [12]. In17

contrast, it has been known for some time that HIV shows extensive genetic variation even within individual hosts, making18

HIV one of the fastest evolving of all organisms [13]. Therefore, one of themainmodifications wemake is to remove the rule19

leading to viral reservoirs due to mutating viruses, a characteristic property of HIV. We eliminate that as a mathematically20

possible rule and replace it with a rule that reflects a delayed or slower immune response to the virus. The rest of the rules in21

the SCA stay the same and this small change immediately speeds up the course of the viral infection to a fairly rapid recovery22

or death.23

The paper is organized as follows. In Section 2 we give the basic definitions of CAs and SCAs, introduce the rules used in24

ourmodel of EBOV dynamics, and present theoretical results. The output obtained by various computer simulations utilizing25

different parameters is analyzed in Section 3, and we discuss some conclusions in Section 4.26

2. Theory of cellular automata models27

2.1. Cellular automata28

LetA denote the finite state space or alphabet,A = {0, 1, 2, 3}. We use state 0 to represent a healthy cell site in an organ,29

and states 1 and 2 to represent infectious cells able to infect neighboring cells. State 3 represents a depleted (dead) cell site.30

Then, we define the integer lattice Z2
= {⃗ı = (i, j), i, j ∈ Z}, viewed as a subset in the plane (or on a surface, by identifying31

edges of a polygon). The length of a vector in Z2 is taken as ∥⃗ı∥ = max{|i|, |j|}. The space on which a cellular automaton acts32

is X = AZ2
, which we think of as the integer lattice Z2 in the plane with exactly one value from the state space A placed33

at each coordinate (i, j) in the lattice. The space X is mathematically equivalent to the set of functions from Z2 to A. So, for34

each x ∈ X and ı⃗ = (i, j) ∈ Z2 wewrite x(i,j) to denote the coordinate of x at ı⃗, with x(i,j) ∈ {0, 1, 2, 3}. Similarly for any finite35

set E ⊆ Z2, we define xE to be the block of coordinates {x⃗ı : ı⃗ ∈ E}; i.e., xE ∈ A|E| where |E| is the cardinality of E.36

Wemake X into a compact space by using the classical metric on X , which is defined so that two points are close if their37

coordinates agree on a large central region. First, we define a neighborhood of radius k ∈ N ∪ {0} about (0, 0) ∈ Z2, by38

Nk = {⃗ı = (i, j) : |i|, |j| ≤ k} = {⃗ı : ∥⃗ı∥ ≤ k}. Then, the metric dX on X is defined as follows: for any pair of points x, v ∈ X ,39

dX (x, v) =
1
2k

where k = min

m : xNm ≠ vNm


. We call a pattern any fixed (2k + 1)2 square block of states from A (or a40

finite union of (2k+1)2 square blocks), k ∈ N. We form a basis for the metric topology from the following collection of sets.41

For any pattern u, define Bu = {x ∈ X : xNk = u} to be the u-cylinder of radius k (centered at (0, 0)). Bu is precisely the set42

of points from X whose central block of coordinates extending out k units in each direction from (0, 0) coincides with the43

fixed pattern u.44

The space X provides a model for an organ that is susceptible to the virus such as liver, spleen, lungs, or skin [5,14]. Each45

point x ∈ X represents a configuration of the healthy, infected, and depleted cells of the organ at any given time, and each46

coordinate x(i,j) shows the state of the organ at that location where a coordinate is either a cell or a site of cells, depending47

on the organ. In order to dynamically move around within an organ and sample the state at any location, we define the shift48

maps on X as follows:49

∀ ı⃗ = (i, j) ∈ Z2, [σı⃗ (x)](k,l) = x(i+k,j+l).50

With respect to the metric dX , each shift σı⃗ is a continuous transformation on X . With all this structure in place, we are now51

able to define a CA.52

Definition 2.1. A 2-dimensional cellular automaton (CA) is a continuous transformation F on X such that for every ı⃗ ∈ Z2,53

F ◦ σı⃗ = σı⃗ ◦ F .54

It is well-known that each CA is characterized by a local rule (of radius r ≥ 0), based on the definition of continuity in55

the metric topology on X . In the next theorem this is made precise.56
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