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h i g h l i g h t s

• The dynamics of quasi-2D polydisperse granular particles is characterized.
• Evidence is found that aging in glass-like systems is dominated by avalanches.
• Relaxation resembles that of some 3D colloidal monodisperse hard sphere glasses.
• Avalanches may play a role in the dynamics of a wide variety glassy systems.
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a b s t r a c t

The dynamics of an experimental driven quasi-2D system of polydisperse particles in a
cluster formed by granular collapse is characterized via the self-intermediate scattering
function and the mean-squared displacement and is compared with monodisperse exper-
imental and computational systems. The dynamics, despite the difference in dimension-
ality, is shown to resemble that of de-vitrification in certain simulations of 3D colloidal
monodisperse hard sphere glasses in that avalanches are a key feature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of systems exhibiting granular collapse, defined as the constituent particles losing nearly all of their ki-
netic energy due to inelastic collisions and forming a dense cluster [1], is comparatively poorly understood, particularly
in polydisperse systems. Quasi-2D systems are those in which 3D constituents are constrained to move in such a manner
that two particles cannot simultaneously have the same 2D coordinates. Quasi-2D granular dynamics has been studied ex-
perimentally before [2–4] but, with relatively few exceptions, previous work has focused on near-monodisperse particles
with no granular collapse. An important exception is the seminal work of Olafsen and Urbach [5], who report clustering and
granular collapse for a granular monolayer with uniform agitation. Experimentally, inhomogeneities in thermal systems in
non-equilibrium states have been observed, for example, in supercooled liquids, which can develop fragile solid-like net-
works, which exhibit aging, enclosing ‘‘liquid pockets’’ [6].

In the present work we present primarily experimental results regarding the dynamics of quasi-2D systems subject to
granular collapse. There is evidence supporting that the dynamics of systems without granular collapse are, except for a
ballistic regime at short times, diffusive or subdiffusive [3], and that entropy-like arguments can be applied to them [7–9].
We present evidence that, in the presence of granular collapse arising due to inhomogeneous agitation, the dynamics of
slow relaxation, i.e. aging [10], is dominated by ‘‘avalanches’’, i.e. some particles participating in large, sudden, stochastic
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Fig. 1. The experimental setup used is shown schematically. The filled circles depict the particles used (not shown to scale). The diagram is reproduced,
with modifications, from Sánchez and Huerta [13]. The inset shows a still from a video of 123 near-monodisperse particles, with enhanced contrast for
visual clarity.

motions [11]. This situation is reminiscent of that predicted by simulation for certain non-equilibrium colloidal glasses [11],
i.e. glasses of thermal particles with classical dynamics [12], where we define glasses as arrested, dense systems with no
long-range order.

2. Materials and methods

A level plastic box containing the particles, itself placed within another plastic box to reduce, but not eliminate, inho-
mogeneities in agitation, was made to vibrate by a speaker (Sony, 190 W peak output, 16 cm diameter) driven by a 150 Hz
sinusoidal wave from a signal generator (Phillips PM5132) and an amplifier (Steren AMP-010, 35 W rms) (see Fig. 1). Lat-
erally, the particles are confined by rectangular hard walls; for the polydisperse particles, these walls have approximate
dimensions of 22 × 26 mean diameters. The vibrations were transmitted via air under normal atmospheric conditions. The
inhomogeneities arise from curvedwavefronts impinging on a flat surface (themaximum induced amplitude in the box con-
taining the particles is estimated as ∼1%) and decrease approximately linearly with squared distance from the cell center.

Images were captured by aMicrosoft LifeCamVX-800webcam at a rate of 5 frames per second; using a rate over an order
of magnitude slower than the driving frequency ensures non-negligible agitation between frames. The setup is described in
detail elsewhere [14,13]. Fundamentally, this system is reminiscent of that used byGradenigo et al. [15]. Near-monodisperse
(∼1% polydispersity) 0.77 cm mean diameter plastic spheres, and 6.76% polydispersity 0.35 mmmean diameter Styrofoam
spheres were used. For the polydisperse spheres, the number of particles per frame (i.e. the number of particles in the
system) is ∼500, depending on the exact packing fraction η, defined as the fractional area occupied by the particles, taking
them as circles. For the near-monodisperse spheres, ∼100 were used.

The particle positions as a function of frame number were obtained using an ImageJ plugin developed by Sbalzarini and
Koumoutsakos [16]. All further analysis was carried out using software written in-house. Fs(k, t) was calculated using all
trajectories obtained from a given image sequence.

Event-driven molecular dynamics (MD) simulations of strictly 2-dimensional, non-dissipative, monodisperse hard disks
with periodic boundary conditions were carried out. We fixed the temperature kBT = 1 by appropriately scaling the mag-
nitudes of the velocities of each particle, and the diameter σ = 1, such that the kinetic energy agrees with the equipartition
theorem. The velocities’ initial directions were chosen randomly. In order to get equally time-sampled positions of the par-
ticles, i.e. the trajectories, we interpolated the position of each particle between a collisional event. Otherwise, standard
event-drivenMDwas used. The algorithm treated the discontinuous hard disk potential by using elastic collisions (conserv-
ing energy and momentum) during each event (collision) [17]. We recorded the trajectories of 400 and 2500 particles for
60000 time steps with a fixed time interval of 0.01. The 400 and 2500 particles were located inside a square box whose size
was assigned to match the appropriate packing fraction. We started from a random configuration obtained from a previous
NVTMonte Carlo simulation. Before recording trajectorieswe also ran aMD simulationwith velocities assigned as described
before, in order to equilibrate the system, and checking also that the mean-squared displacement reaches diffusive behav-
ior at each packing fraction. Non-dissipative dynamics were used for the simulations in order to better isolate the effect of
non-equilibrium effects, including dissipative dynamics, in the experiments.

To characterize the dynamics of both the experimental systems and the simulations, we define the 2D self-intermediate
scattering function as follows [18]:

Fs(k, t) =
1
N


N
j=1

exp{−ik · [rj(t) − rj(0)]}
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