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In this paper, we consider two growing networks which will lead to the degree-degree
correlations between two nearest neighbors in the network. When the network grows to
some certain size, we introduce an SIR-like disease such as pandemic influenza HIN1/09
to the population. Due to its rapid spread, the population size changes slowly, and thus
the disease spreads on correlated networks with approximately fixed size. To predict the
disease evolution on correlated networks, we first review two node-based SIR models
incorporating degree correlations and an edge-based SIR model without considering
degree correlation, and then compare the predictions of these models with stochastic SIR
simulations, respectively. We find that the edge-based model, even without considering
degree correlations, agrees much better than the node-based models incorporating degree
correlations with stochastic SIR simulations in many respects. Moreover, simulation results
show that for networks with positive correlation, the edge-based model provides a better
upper bound of the cumulative incidence than the node-based SIR models, whereas for
networks with negative correlation, it provides a lower bound of the cumulative incidence.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling of infectious diseases, abbreviated for mathematical epidemiology (ME), can be dated back to
Daniel Bernoulli [1], who studied the effect of variolation on smallpox to increase life expectancy, and initiated the idea of
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using differential mortality to estimate the rate of deaths attributable to a given disease. Mathematical epidemiology did not
achieve much development in the late eighteenth and nineteenth centuries until the early twentieth century. In 1911, Sir
Ross formulated a model to describe the spread of malaria through mosquitoes, and initiated one of the most important
concepts in epidemiology “threshold effect”, stating that the malaria in a region could be controlled by reducing the
mosquito population size to a certain threshold [2]. This idea was further formalized and extended to general compartmental
models in 1927 by Kermack and McKendrick [3,4], known as the basic reproduction number or basic reproductive ratio
and often denoted as Ry, which is defined as the average number of secondary infections generated by a typical infected
individual during its entire infectious period when introduced into a completely susceptible population [5]. Since then, a
number of mathematical models have been formulated and proposed to analyze and estimate the spread and control of
infectious diseases. Most of these models are variants of that of Kermack and McKendrick [3,4], see, for example, the book
by Bailey [6] and a review paper by Hechcote [7].
To describe the spread of infectious diseases, Kermack and McKendrick formulated [3] the following basic SIR model

S’ = —pSI,
I' = BSI —yI, (M)
R =ylI,

where S, I and R are all functions of time t and denote the number of the susceptible, infected and recovered individu-
als, respectively, B is the transmission coefficient between susceptible and infected individuals, and y is the recovery rate
of infected individuals. Here, the prime ' denotes derivative of a variable with respect to time t, and this notation is used
throughout the paper without otherwise specified. There are two main features of this model: first, the number of suscepti-
bles in the population decreases monotonically due to being infected but does not approach zero; and second, the number
of infected eventually goes to zero as time t moves on. Denote by Sy the initial number of susceptible individuals at the
very beginning of a disease, then the basic reproduction number of model (1) is defined as Ry = So/y, which completely
determines whether there is a major epidemic or not. In particular, if Ry < 1, the number of infected individuals goes down
directly and there is no epidemic or minor outbreak; whereas if Ry > 1, the number of infected individuals goes up at first
due to the infection, then down again due to the recovery of infected individuals, and there is a major outbreak. The whole
epidemic process ends with no infected individual left in the population. This kind of model assumes permanent immunity
and is applicable to diseases such as flu, measles and chickenpox caused by a virus. Another fundamental model frequently
used in mathematical epidemiology is of SIS type, which assumes no immunity against re-infection (once infected, the in-
fected individuals can go back to the susceptible class), and is applicable to diseases such as cephalitis and gonorrhea caused
by a bacterium. Both of these models yield the same basic reproduction number, i.e. Ry = 8So/y. However, if Ry > 1 the SIS
type disease will persist at an endemic level. For more details about these basic epidemiological models, we refer the inter-
ested reader to, for example, Refs. [8,9]. In the present paper, however, we mainly concentrate on the SIR epidemic model.

Although model (1) is fitted well for some observed disease data, it is too oversimplified and ignores too many structures
presented in the real population. For example, it is assumed that the sizes of the compartments are large enough such
that the population is homogeneously mixed, that is, every individual has the equal probability of contacting any other
individual in the population. This assumption, however, is not realistic. In fact, different individuals may have varying
number of acquaintances [10,11]. One way to proceed would be to add contact heterogeneity to the population and see
how much this alters the model behavior [12]. Contact network models are such attempts to represent the population.
Under this framework, each individual is denoted by a node of the network, and possible contacts between two individuals
(corresponding to two nodes in the network) are linked by an edge. These two nodes are called neighbors of each other,
and thus a node can acquire infection only from one of its neighbors; in other words, the contact rate is proportional to the
number of neighbors, i.e. the degree of a node.

In 2001, Pastor-Satorras and Vespignani [13] proposed a network SIS model to be account for long-lasting viruses in
the computer networks. They found the absence of an epidemic threshold in the limit of large population size, which is in
direct contrast to that of classical compartmental epidemic models. Later on, Moreno et al. [ 14] extended the network SIS
framework in Ref. [ 13] and considered the following heterogeneous network SIR model

S, = —BkSyO,
I,i, = ﬁkSk@ — ]/[k, (2)
Ry = vl

where Sy, I, and Ry, are the number of susceptible, infected and recovered individuals with degree k, respectively, and S is
the per edge transmission rate between a susceptible node and an infected node. The term ® denotes the probability that
any randomly chosen edge points to an infected node. For uncorrelated networks, the probability that an edge points to a
node of degree k is proportional to kP (k) [ 13,14], where P (k) is the degree distribution of the network. Thus, the probability
that a randomly chosen edge connects to an infected node is
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