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Abstract

A mathematical model has been developed for the analysis of a capillary column IGC experiment. An important feature in the derivation
of the model is the inclusion of Taylor dispersion effect. The model shows that Taylor dispersion effect has a very significant effect on elution
profiles at low values ofβ andγ. Taylor dispersion effect causes more spread in the longitudinal direction and the peaks become broader.
Taylor dispersion becomes more significant asβ becomes smaller. The model presented in this paper is more general than the usual IGC
models and sets criteria equations to determine under what conditions the Taylor dispersion effect can be made negligible. A comparison
between the present and usual IGC models above and near the glass temperature of the polymer is conducted. The analysis also describes the
effect of kurtosis on pulse dispersion at extremely low diffusivities.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Inverse gas chromatography is the most widely used tech-
nique for accurate measurement of polymer phase diffusion
coefficients in polymer–solvent systems. Although extensive
studies on inverse gas chromatography exist in the literature,
none of these investigated the effect of Taylor dispersion on
the elution profiles. In all previous IGC models, the effective
axial dispersion coefficient was assumed to be independent
of the carrier gas velocity. The problem of solute dispersion
in a capillary tube was first studied by Taylor[1]. He outlined
that under certain conditions, the solute is dispersed along the
pipe in a manner similar to diffusion from a plane source, but
with the system co-ordinate moving with a velocity equals
to the mean velocity of the flow. The criteria under which
Taylor analysis was valid could be expressed as ¯u � 7D/R
and t�R2/(3.8)2D. He also showed that the effective ax-
ial diffusion coefficient under these conditions is given by
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Dax = R2ū2/48D. Later on, Aris[2] gave a new treatment
and removed the restriction imposed by Taylor and showed
that the effective axial diffusion coefficient is equal to the sum
of molecular diffusion coefficientDand the Taylor’s effective
axial diffusion coefficient. Therefore, the IGC model assump-
tion that the gas-phase axial dispersion is independent of flow
velocity is highly questionable. However, this assumption has
been used earlier by Pawlisch and coworkers[3] to derive a
mathematical model applicable for analyzing IGC experi-
ments. Most of the subsequent researchers interested in IGC
have used the same model. Pawlisch and coworkers[4] have
presented improvements on their earlier model[3] to account
for a nonuniform polymer film thickness (eccentricity). By
using the model developed in[3], Vrentas and coworkers
[5] derived a simple equation for IGC data analysis at very
low polymer phase diffusion coefficientsDp. In their mod-
ified model, sinceγ is typically small, it was assumed that
the axial diffusion in the gas phase has a negligible effect on
the dispersion process. The reason for neglecting axial diffu-
sion effect at very low polymer phase diffusion coefficients
is because the solute molecules will spend most of the time
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diffusing slowly in the stationary phase and therefore, the re-
sults are not sensitive to the gas phase diffusion coefficient
Dg. However, neglecting the effect of molecular diffusion
would mean that the whole of the longitudinal mass transfer
is due to convection and unless the Peclect numberPeis made
very small, Taylor dispersion effect becomes significant and
should be included in the analysis. The Peclect number can
be made small by reducing column radiusR, carrier gas ve-
locity ū or increasing the diffusion coefficient of the solute in
the gas phaseDg. However, there are limits imposed on these
parameters in order to conduct experiments within reason-
ably short times and to avoid peak broadening. The purpose
of this work is to derive a mathematical model for analysing
IGC experiments which takes into consideration the depen-
dence of the gas-phase dispersion on the carrier gas velocity.
The model could be used to assess the validity of assuming
negligible Taylor dispersion effect as done previously in the
usual IGC models.

2. Capillary column model

The main assumptions and the transport equations for IGC
are the same as those used in the early study of Pawlisch and
coworkers[3]. The transport equations for the concentration
of the solute in the gas phasec and in the polymer phasec′
can be written as
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The initial and boundary conditions are given by Vrentas
[5] as
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By introducing the following non-dimensional variables
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Eqs.(1) and(2) can be written in non-dimensional form
as
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The initial and boundary conditions in Eq.(3) can be re-
written in dimensionless form as
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The concentration of the solute in the gas phasey and the
axial flow velocityu can be expressed in terms of their area
averaged values (¯y and ū) and fluctuations from the area
averages (˜y and ũ) as

y = ȳ + ỹ (10)

u = ū+ ũ (11)

Substituting(10) into (5) gives
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∂θ
+ u

∂ȳ
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In the usual IGC models, the radial variation in the gas
phase concentrationy is assumed to be so small such that
ỹ � ȳ. In this case,y = ȳ is used as an approximation
which yields the plug flow model[3]. Taking spatial aver-
age of Eq.(12)and making use of the boundary conditions in
Eq.(9) and the property of spatial averaged fluctuations

ỹ = ũ = 0 (13)

yields
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