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a b s t r a c t

We set out in this study to investigate the relationship between
jump frequency and jump size for the 30 component stocks of
the Dow Jones Industrial Average (DJIA) index, extending the
Markov-modulated jump diffusion model from independence to
dependence between jump frequency and jump size. We propose
an estimation method for the parameters of the Markov-modulated
jump diffusion model based upon dependence between jump fre-
quency and size, with our results indicating that when abnormal
events occur, the Markov-modulated jump diffusion models with
both state-independent jump sizes (MJMI) and state-dependent
jump sizes (MJMD) outperform the pure jump diffusion (JD) model
in terms of capturing the risks of jump frequency and jump
size. Based upon Akaike Information Criterion (AIC) and Schwarz
Bayesian Criterion (SBC), our results further indicate that for 23
of the component stocks, the MJMD model may be better suited,
as compared to the MJMI model. Finally, our empirical observa-
tions reveal that the behavior of jump risks in the stock markets,
including jump frequency and jump size, is not independent, since
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these phenomena are found to coincide during both financial crisis
periods and stock market crashes, with the largest jump size risks,
during certain periods, being accompanied by either systematic or
idiosyncratic risks.

© 2016 Published by Elsevier Inc.

1. Introduction

Having identified the phenomenon of jumps in the financial markets, many of the prior related
studies have gone on to apply the widely-used Merton (1976) jump diffusion models in their analyses.1

Within the Merton jump diffusion model framework, the fluctuations in stock returns are divided into
two elements, the first of which describes the normal fluctuations in stock returns (which are modeled
based upon normal distribution), while the second describes the abnormal fluctuations in stock returns
with the arrival of abnormal information (good or bad news). Merton (1976) also went on to identify
two random factors with compound processes to describe the abnormal fluctuations, namely jump
frequency and jump size, where jump frequency is the arrival rate of the information and jump size
is the change in the stock return on the occurrence of such abnormal events.

Markov-modulated models have been extensively evaluated in many of the more recent studies2;
for example, in the application of the asset pricing of Markov-modulated models, Elliott, Siu, Chan,
and Lau (2007) investigated the option price under a generalized Markov-modulated jump diffusion
model, while Bo, Wang, and Yang (2010) similarly derived the valuation of currency options when the
spot foreign exchange rates followed a Markov-modulated jump diffusion model. Elliott and Siu (2013)
subsequently provided the hidden Markov chain modulating pure jump asset pricing model, which
has proven to be capable of capturing the asymmetric jump features on changes in the stock returns. In
their application of ‘ruin and default’ theory, Huang, Lin, and Wu (2009) proposed a Markov-modulated
compound Poisson processes to describe the default behavior of firms.

Chang, Fuh, and Lin (2013) noted that the arrival rate of jump frequency in the Dow Jones Industrial
Average (DJIA) index and its component stocks was not constant, and thus, was potentially dependent
upon jump risks. They developed a Markov-modulated jump diffusion model in which hidden states
were adopted to describe the arrival rates with changes in the level of intensity of the abnormal events.
They also provided closed-form solutions for the Markov-modulated jump diffusion model under
a general equilibrium framework for option prices, clearly showing that the resultant distribution
had certain empirically-observed financial features in the DJIA and its component stocks, including
leptokurtic returns, volatility smile and volatility clustering.

Based upon their empirical studies on ten years of stock return data, superior empirical fit over com-
peting Poisson style models was identified by Chang et al. (2013) using the expectation–maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). The EM algorithm is an iterative method for the ‘max-
imum likelihood estimation’ (MLE) of the parameters in the statistical model, comprising of two steps
which are referred to as the ‘expectation step’ (E-step) and the ‘maximization step’ (M step). The E-step
creates a function for the expectation of the completed data log-likelihood which is then evaluated
using the current estimates of the parameters in incomplete data, including jump frequency and jump
size, with the states being the hidden variables in the Markov-modulated jump diffusion model. The
M-step subsequently computes the parameters maximizing the expected log-likelihood previously
identified in the E-step.

In the present study, we extend the Markov-modulated jump diffusion model with state-
independent jump size, as described in Chang et al. (2013), to the Markov-modulated jump diffusion

1 See, for example, Ball and Torous (1983), Ball and Torous (1985), Jarrow and Rosenfeld (1984), Feinstone (1987), Akgiray
and Booth (1988) and Kou (2002).

2 Examples include Elliott, Siu, Chan, and Lau (2007), Huang, Lin, and Wu (2009), Bo, Wang, and Yang (2010), Chang, Fuh, and
Lin (2013) and Elliott and Siu (2013)
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