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Abstract

This paper presents a four-dimension hyperchaotic Lorenz system, obtained by adding a nonlinear controller to Lorenz chaotic
system. The hyperchaotic Lorenz system is studied by bifurcation diagram, Lyapunov exponents spectrum and phase diagram.
Numerical simulations show that the new system’s behavior can be convergent, divergent, periodic, chaotic and hyperchaotic when
the parameter varies.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In 1979, Rossler proposed the conception of hyperchaos and presented hyperchaotic Rossler system [1]. Since it
generates multiple positive Lyapunov exponents, hyperchaotic system’s behavior is harder to predict than the general
chaotic system. Thus hyperchaotic system is more valuable in secure communication and received a great deal of
attention [2]. In recent years much research has been done in this area theoretically and experimentally [3,4]. Chen
et al. [5] presented hyperchaotic Chen system based on Chen chaotic system; Lii et al. [6] proposed hyperchaotic Lii
system based on Lii chaotic system; Nikolov et al. [7] presented modified hyperchaotic Rossler system; Gao et al. [8]
gave another method to generate hyperchaos from Chen chaotic system. On synchronization, tracking and secure
communication of hyperchaotic systems, a lot of research have been done and many methods have been presented
[9-16]. In this paper, hyperchaos is generated from Lorenz chaotic system via adding a nonlinear controller to it. The
new four-dimension system’s behavior is studied by bifurcation diagram, Lyapunov exponents spectrum and phase
diagram when the parameter varies.

2. Design of hyperchaotic Lorenz system

Lorenz system [17] is described as

X =a(y—x)
y=cx—y—xz ey
z=xy— bz,
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Fig. 1. The projections of Lorenz attractor.

when a = 10, b = 8/3, ¢ = 28, Lorenz system exhibits a chaotic behavior, the projections of the chaotic attractor are
shown in Fig. 1.
Add a nonlinear controller w to the first equation of system (1), let w = —yz 4 rw, then we obtain a new system

XxX=a(y—x)+w
y=cx—y—xz
z=xy—bz

W= —yz+rw.

2)

In order to obtain hyperchaos, the important requirements are as follows:

(1) The system has dissipative structure.

(2) The minimal dimension of the phase space of an autonomous system is at least four.

(3) The number of terms in the equations giving rise to instability is at least two, of which at least one has a nonlinear
function.

In system (2), r is the control parameter. Let a = 10, b = 8/3, ¢ = 28, when
ox dy 9z 0w
= D L 10— 1-8/3+r=r—13.667 <0,
dx Jdy dz ow
system (2) can have dissipative structure, so theoretically the largest value of r is 13.667. Choose r near zero so that
the previous dissipative structure can be maintained most, according to the method presented by Ramasubramanian
et al. [18], we obtain when r = —1, the Lyapunov exponents: A; = 0.3381, 1, = 0.1586, A3 = 0, A4 = —15.1752. It
is obvious that system (2) exhibits a hyperchaotic behavior. The projections of the attractor are shown in Fig. 2.

3. Analysis of hyperchaotic Lorenz system

When r > 0, if |r| becomes larger, the drive force in system (2) will be larger, system (2) tends to be not steady.
On the contrary, when r < 0, if |r| becomes larger, the dissipative force in system (2) will be larger, system (2) tends
to be steady. In the numerical simulations, choose r near zero, we find that when r > 0.17, system (2) will diverge
quickly and when r is negative, system (2) will converge to one of its equilibrium points if |r| is relatively large. The
simulation results are shown in Fig. 3.

From Fig. 3, we can see that sometimes system (2) needs long time to converge to one point. Through simulations
of system (2)’s long-term behavior, we obtain that when r < —6.43, system (2) will converge to one of its equilibrium
points.

In order to study the relation between r and system (2)’s behavior, we make the bifurcation diagram of system (2)
for —6.43 <r < 0.17 in Fig. 4. X1« stands for the largest x in every unsteady period or steady period. When system
(2)’s behavior is periodic, Xmax has only one value or numbered values with certain »; When system (2)’s behavior is
chaotic, Xpax Will have numberless values with certain r. According to the method presented by Ramasubramanian
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