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h i g h l i g h t s

• Formalism for dealing with droplet shapes in random velocity fields is developed.
• The interaction with the other droplets of the emulsion is taken into account.
• The formalism is used to investigate shape of droplets governed by surface tension.
• It is shown that the interaction between droplets suppresses deformation mode.
• The suppression occurs at low frequencies relative to the deformation–decay rate.
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a b s t r a c t

The paper investigates the interaction between dispersed droplets in an emulsion under
random stirring of the host fluid. The main interest is to examine the autocorrelation of
the shape fluctuations in such randomly stirred host fluids, beyond the dilute limit regime.
Keeping expressions to leading order in the density of droplets and in deviation of droplets
shapes from spherical, the shape is expanded in spherical harmonicmodes and the correla-
tions of these modes are derived. The special case of droplets that are governed by surface
tension is investigated in detail. The correlations of the deformations that are obtained for
this special case are damped relative to the deformation correlations in the dilute regime.
The dependence of the damping on frequency is also discussed.

© 2015 Published by Elsevier B.V.

1. Introduction

Single deformable objects such as droplets of one liquid dispersed in another liquid fluctuate in shape in response to
random external stirring [1]. The purpose of this paper is to investigate the effect of interaction between such deformable
objects [2] on the way that each object deforms due to external stirring. The purpose here is not to restrict the general dis-
cussion to thermal velocity fields. While numerous authors have studied the fluctuations and diffusion of single deformable
objects due to thermal agitation [3–10], there are clearly other ways in which systems are agitated. In industrial and bi-
ological environments, the host liquid is often stirred, shaken or pumped in ways which are very different from thermal
agitation. The list of examples is not restricted to artificial processes. It also includes natural processes such as Brownian
motion of small beads induced by the collective motion of bacteria [11,12] and nano-scale mechanical fluctuations of the
red blood cell surface that have been measured and shown to depend strongly on the biochemical environment and not
only on temperature [13–16]. For this reason the external velocity field agitating the system is taken to be more general
than that corresponding just to thermal motion. The article provides thus the general equations describing the effect of a
finite density of deformable objects on the shape fluctuations of a single object, to linear order in the density.
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The approach used in this paper is that of linear response. The two ingredients of the calculation are the equations relating
the deformations of a single object to an external velocity field and the equations providing the velocity field due to a given
deformation of a deformable object far away from its centre. The positions of the objects and the properties of the random
stirring are given only in the statistical sense. The above ingredients are thus used to gain statistical information on the
deformation of the object, e.g., correlation of the deformation.

The system considered has the following properties.

(a) The deformable objects are fluid (e.g., liquid droplets), in the sense that the velocity field is well defined everywhere
(both inside and outside the object). No slip and no penetration conditions are assumed at the interface of the deformable
object. Hence, each surface element moves with the velocity of the flow at its position. These are standard conditions,
although some recent work suggests that slip conditions may be more appropriate for some liquid emulsions [17].
In addition, both the objects and the host fluid are incompressible. The objects are characterized by an energy that
depends on their shape (i.e., changing the orientation or switching places of two surface particleswhile keeping the shape
constant does not change the energy). Themain example considered in this paper is surface tension [18,19]. However the
description can be extended to Helfrich bending energy [20,21] and other cases where the shape of minimum energy
is nearly spherical. Deformation of the shape changes the energy, exerts a force density on the liquid and therefore
generates an additional velocity field, denoted by v⃗ψ .

(b) The hydrodynamic equations of the host liquid are linear in the velocity (i.e., a velocity field induced by several sources
is equal to the sum of the velocity fields induced by each source separately). For instance, linearity implies that the
Reynolds number is small and that the Stokes approximation to the Navier–Stokes equation is applicable. The actual
velocity field is the sum of the imposed velocity field, v⃗ext (the velocity field that would have existed if the objects were
absent and will also be referred to as the external or bare velocity field), the velocity field induced by the deformations
of the object under consideration, v⃗ψ , and v⃗r which is the velocity field created by the rest of the deformable objects,

v⃗ = v⃗ext + v⃗ψ + v⃗r . (1)

(c) The external velocity field is assumed to be random with zero mean and correlations that depend only on distance and
time difference. Furthermore, the dependence on the time difference is taken to be extremely short ranged (Dirac δ
function in the time difference). In principle, equations for the dependence of the shape correlations on the density
of deformable objects can be worked out for any dependence of the velocity correlations on time. These are very
complicated, however, and the above choice of the dependence of the external velocity correlations on time simplifies
matters considerably and is certainly realistic in many cases such as thermal agitation [10]. The justification for using
short range correlations in time will be further discussed, however, at a later stage. It is important to note that the
results obtained here are not used to determine the external velocity correlations. Those correlations are just taken
as a given input. For example, in the special case of thermal agitation the velocity correlation was calculated from first
principles [10] and approximated as very short ranged in time and only then used to calculate the diffusion constant and
deformation characteristics of a deformable object immersed in the liquid. In addition the external velocity is assumed
to be small enough to allow the body to remain almost spherical.

(d) Last, it is assumed that the objects are small in comparison to the typical distance between droplets and to the spatial
correlation length of the velocity field.

Since small deviations are assumed from the spherical shape it is only natural to describe the surface shape of the objects
using spherical harmonics. Consider a spherical body which is moving and is slightly deformed. The equation

ρ

R
+ f (Ω, t)− 1 = 0 (2)

defines its surface, yielding for each spatial direction,Ω , the distance, ρ ≡ |r⃗− r⃗0|, of the surface from the centre of the body,
r⃗0. R is the radius of the undeformed sphere. The deformation function, f (Ω, t), defines the shape and may be expanded in
spherical harmonics, f (Ω, t) =


∞

l=1
l

m=−l flm(t)Ylm(Ω) (clearly the Y00 term can be absorbed in the definition of R). The
goal is to obtain the correlations between the deformation coefficients, flm(t). The centre of the object, r⃗0, is chosen to be
the point around which the deformation coefficients with l = 1 vanish: f1m = 0. A different definition of the centre will
introduce three different equations for the deformation coefficients with l = 1. These are not interesting, as far as the shape
is concerned, since in the first order of the deformation the spherical harmonics with l = 1 describe a rigid translation of
the object [22,23].

The random velocity field and the effect of the interaction between objects induce fluctuations in the values of the
deformation coefficients describing each of the objects. Consider the autocorrelation of the deformation coefficient f il,m of the
i’th object ⟨f il,m(ω)f

i
l,−m(−ω̃)⟩, where f ilm(ω) and f ilm(ω̃) represent the Fourier transforms (FT) of the deformation coefficients

of the i’th object with respect to time. The autocorrelation is expanded in orders of the number density of objects, n. To first
order in the density n it is given by

f il,m(ω)f
i
l,−m(−ω̃)


= Gl,0(ω, ω̃)+ G̃l,1(ω, ω̃) · n. (3)

The first term on the right hand side of Eq. (3) gives the shape correlations of a single object, that has been described
previously [1]. The second term represents the correction to the shape correlations due to a small but finite density of
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