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h i g h l i g h t s

• A new memory car-following model is proposed.
• The memory effects on the stability of traffic flow have been investigated.
• The new car-following model compensates for the disadvantage of the sensory buffer time neglected in existing models.
• The new memory car-following model can convey following car’s driver sensing behavior better and avoid the negative velocity in

existing models.
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a b s t r a c t

This paper presents one kind of new car-following model (mean memory model, simpli-
fied asMMM) by introducing driver sensorymemory (sensory buffer) term into the original
optimal velocity (OV) function by Bando et al. (1995, 1998). The main improvement is that
MMM can avoid the disadvantage of the sensory buffer time neglected in existing models.
The stability condition of the proposed model is obtained by using linear stability theory.
Results show that the stability region decreases when the driver’s sensory buffer time in-
creases. Furthermore, the model is investigated in detail by numerical methods. The fol-
lowing conclusions are derived. (a) Numerical results of starting process for the car motion
under a traffic signal accord with empirical traffic values; (b) the numerical simulations in
the form of the space–time evolution of headway and velocity are also in good agreement
with the theoretical analysis; (c) the size of hysteresis loops will be reduced with the sens-
ing buffer time decreasing. Both analytical and simulation results show that the following
car driver’s sensory buffer time plays an important role on the stability of traffic flow.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Currently, road traffic congestion and jam are becomingmore andmore serious. Various car-followingmodels are devel-
oped to investigate its evolutionmechanism in the past decades. Among them, several epochmakingmodels are particularly
important, many subsequent car-following models were proposed on the inspiration of them. (a) The seminal works (orig-
inal linear models) by Pipes [1] and Chandler et al. [2], (b) the early nonlinear models presented by Herman et al. [3], Gazis
et al. [4,5] and Newell [6], (c) the recent optimal velocity model (OVM) of Bando et al. [7]. Subsequently, many extended
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traffic models [8–40] have been presented with the consideration of different traffic factors on the basis of them, especially
based on OVM.

However, all of the above models exclusively depend on traffic states at present time t , namely, the past traffic states
of the leading car have not been considered in them. In real traffic, the past information of traffic flow has an important
effect on a driver during his/her running process. Zhang [41] pointed out that a driver has memory if his speed at a later
time depends on his speed at a previous time and developed a macro model by incorporating the effect of driver’s memory.
Subsequently, Tang et al. [42] presented a car-followingmodelwith driver’smemory and Peng et al. [43] presented a driver’s
memory lattice model of traffic flow. By observing the actual traffic behavior of the driver, Herman et al. [3] found that the
driver during his/her running process will leave the memory of past information. That is to say, driver’s memory should be
taken into account in the traffic model. Based on the original OVmodel [7], a kind of newOVmodel is proposed in this paper
by incorporating driver’s memory time term. However, models in Refs. [42,43] are based only on a point memory only at the
previous time t−τ0, they neglected the states between t−τ0 and t . In real traffic world, in order to get relatively reliable and
stable predecessor driving states and trends, the following car driver always need a period of time (such as from t − τ0 to t)
to accomplish perceiving, understanding and projecting predecessor driving states and trends process. Hence, this time has
been thought to be unavoidable and is essential to construct realistic traffic flow models and understand traffic kinematics
and dynamics. Simultaneously for reasons of simplification, we only consider distance headway and take the mean value of
headways in a period of time [t − τ0, t] as the driver’s sensing headway and desired velocity motive force. Thus, a desired
velocity model based on a continuous sensing of leading car’s motion states in a period of time [t − τ0, t] is formed, not
only on present time point t and the previous time point t − τ0, but also on their gaps. This is the main difference of our
model from previousmodels includingmemorymodels [42,43]. Further, an improved car-followingmodel with considering
driver’s memory effect is proposed as follows in Section 2. We call it mean memory model (for short, MMM).

2. Models

2.1. Continuous model definition

Considering continuous traffic states in [t − τ0, t], an integral desired velocity function is constructed as the following
Eq. (1),

dxn(t + τ)

dt
= V


1
τ0

 t

t−τ0

1xn(u)du


, u ∈ [t − τ0, t] (1)

where 1xn(u) = xn−1(u) − xn(u) is the headway between the preceding car n − 1 and the following car n, respectively;
xn−1(u) and xn(u) represent the positions of the car n − 1 and the car n at time u; τ is the following car velocity response
time; τ0 is the driver sensory memory time; V is the desired velocity function. In order to derive the acceleration, we give
the one-order Taylor series expansion about τ on the left-hand term of Eq. (1) and obtain Eq. (1) as
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where o(τ ) are the higher-order terms of τ . By ignoring the higher-order terms, we have
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(3)

α = 1/τ is the driver’s sensitivity coefficient; Eq. (3) shows that the following car’s acceleration at time t are determined
by the mean optimal velocity in [t − τ0, t] and the present velocity at t .

2.2. Definition of a discretization scheme

The discretization scheme can be written as:

dxn(t + τ)

dt
= V
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m
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1xn(ui)


, ui ∈ [t − τ0, t]. (4)

By ignoring the higher-order terms of Taylor series expansion about τ on the left-hand termof Eq. (4) and obtain Eq. (4) as

dvn(t)
dt

= α
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, ui ∈ [t − τ0, t]. (5)

By Mean Value Theorem of Integrals, there must be a τ1 ∈ [t − τ0, t], let

1xn(t − τ1) =
1
τ0

 t

t−τ0

1xn(t)dt. (6)

(In the discretization case, the right-hand term of Eq. (6) is 1
m

m
i=1 1xn(ui), ui ∈ [t − τ0, t].)
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