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h i g h l i g h t s

• Granger causality networks are constructed among 20 developed stock markets.
• A detailed procedure of handling the non-synchronicity of daily data is proposed.
• The spatial probit model is used to study the structure of the created networks.
• Relationships between markets depend on a temporal proximity of closing times.
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a b s t r a c t

The structure of return spillovers is examined by constructing Granger causality networks
using daily closing prices of 20 developed markets from 2nd January 2006 to 31st Decem-
ber 2013. The data is properly aligned to take into account non-synchronous trading effects.
The study of the resulting networks of over 94 sub-samples revealed three significant find-
ings. First, after the recent financial crisis the impact of the US stock market has declined.
Second, spatial probit models confirmed the role of the temporal proximity between mar-
ket closing times for return spillovers, i.e. the time distance betweennational stockmarkets
matters. Third, a preferential attachment between stock markets exists, i.e. the probability
of the presence of spillover effects between any given two markets increases with their
degree of connectedness to others.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In empirical finance literature, one is only rarely facedwith an analysis of several hundreds or thousands of relationships.
However, early works of Mantegna [1] and Mantegna and Stanley [2] introduced graphs into the financial literature as a
means to cope with the scale and number of complex relationships between/within economic agents. Suppose a graph G =

(V , E), V ⊂ N, where vertices V correspond tomarkets, and each edge (i, j) from a set of edges E, E ⊂ V ×V , corresponds to
an interaction between twomarkets i and j. Such a graph represents a structure of interactions betweenmarkets. Using graph
specific indicators and statistical methods, one could answer empirically or theoretically motivated questions, e.g. which
markets tend to be clustered together,what type ofmarkets tend to be on the periphery, but alsowhy andwhen this happens.

Most of the network studies on financial markets study correlation based networks. Assume N assets and a correlation
matrix C of returns (with elements ρij ∈ C) with N(N − 1) mutual correlations ρij (excluding diagonal elements). Using
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suitable filtration methods, one can extract the most important correlations, which results in a much more parsimonious
representation of market correlations (Mantegna [1], Coelho et al. [3]), which are in turn used to construct market graphs
ready for further statistical analysis. The two dominant approaches for filtering the most important relationships are: (i)
hierarchical methods and (ii) threshold methods.

Among the hierarchical methods, the most prominent representatives are minimum spanning trees (MST, for a more
detailed treatment see Mantegna and Stanley [2]), and the planar maximally-filtered graph (PMFG, Tumminello et al. [4]).
Numerous studies have shown that after such reductions, the vertices (asset classes) formed meaningful (usually incom-
plete) clusters based on industry classification or the geographical proximity of markets, e.g. Onnela et al. [5], Tumminello
et al. [6], Tabak et al. [7], Lyócsa et al. [8], Bonanno et al. [9], Coelho et al. [10], Gilmore et al. [11], Eryiğit and Eryiğit [12],
Song et al. [13], Mizuno et al. [14], Naylor et al. [15].1

Networks resulting from threshold methods are much more diverse. For example, Onnela et al. [17] has suggested the
asset graph, which is created by retaining n-largest correlations.2 Kullmann et al. [18], Boginski et al. [19], Huang et al. [20],
Tse et al. [21], Bautin et al. [22], Nobi et al. [23], Heiberger [24], Curme et al. [25] constructed networks, where for any pair
of vertices, an edge is created if the corresponding correlation coefficient increases some threshold value θ , say |ρij| > θ .
Sometimes, the threshold varies or is determined via statistical tests. Threshold networkswere also created in Yang et al. [26]
and Tu [27], where an edge was created if a standard Engle and Granger [28] test suggested a presence of a co-integration
between the prices of the two assets.

The main disadvantage of the hierarchical approaches described above (MSTs and PMFGs) is that the topological con-
straints on these networks do not necessarily have economic or statistical rationale. On the other hand, threshold approaches
need a critical value above/below which all edges are retained. Either an arbitrary value is chosen or a statistical validation
is performed (e.g. Curme et al. [25], Yang et al. [26], and Tu [27]).

In this paper we use Granger causality networks to model the complex relationships of return spillovers between 20
developed stock markets around the world. We contribute to the existing literature in several ways. First, our construction
of stock market networks is based on Granger causality testing. Second, our approach enhances the literature on threshold
stockmarket networks by providing a sensible alternative for the choice of the threshold value. Third, we show that the role
of the US market within the networks has declined over time and that the markets have become less centralized. Fourth,
using the spatial probit model, we are able to confirm that the time distance between markets influences return spillovers,
thus also the topology of the Granger causality networks. Even small markets, which are localized near important markets,
may gain great importance in the resulting network. Fifth, we found evidence for preferential attachment betweenmarkets.

Although our approach is unique, the idea of exploiting lead–lag relationshipswas already used in the econophysics liter-
ature as early as in 2002 by Kullmann et al. [18], and later used in Curme et al. [25] and discussed in length by Sandoval [29].
Two recent, related studies of interest are also from Fiedor [30], who uses partial mutual information, derived from an im-
portant measure in information theory, in the study of some securities in the NYSE and from Sandoval [31], who deals with
certain stocks of companieswithin theworld’s financial sector using yet another tool based on information theory,which has
Granger causality as a limiting, linear case.Moreover, Granger causality networkswere also alreadyused in the finance litera-
ture of an influential paper by Billio et al. [32] and are a common tool in human brainmapping, e.g. Bullmore and Sporns [33].

2. Data and methodology

2.1. Data sources

In our analysis we use daily closing prices from N = 20 stock market indices from four continents (Austria, Australia,
Belgium, Canada, Switzerland, Germany, Spain, Finland, France, United Kingdom, Greece, Hong Kong, Ireland, Italy, Japan,
Netherlands, Norway, Portugal, Sweden, and United States).3 Our sample starts in 2nd January 2006 and ends on 31st
December 2013. Markets were selected on the basis of the availability of data and closing hours, including information
on changes in closing hours (see Section 2.3). Prior to the analysis, all prices were converted into US dollars, to mimic the
perspective of a US-based investor. As we are working with daily closing prices, exchange rates should have a negligible
impact on the resulting time series.

Our analysis requires that all the series under consideration areweakly stationary. A time series {xi(t)} isweakly stationary
if the mean of xi(t) is constant and cov(xi(t), xi(t−k)) are invariant under time shift. Financial time series are often tested for
the presence of the unit-root as this implies that the assumption of the weak stationarity does not hold.4

1 An exception is perhaps the study of Jung et al. [16], but even in this case the stocks on the Korean equity market had a tendency to cluster based on
their membership in the MSCI Korea Index. This might be explained by behavioural tendencies of foreign investors, who are perhaps more trusting and
therefore trade more stocks in the MSCI Korea Index compiled by an international institution than others.
2 Or n-smallest distances from a distance matrix D, where dij ∈ D, dij = (2(1 − ρij))

0.5 , see Mantegna and Stanley [2].
3 According to the Dow Jones Country Classification System (as of September 2011) all these countries are considered to be developed countries.
4 A simple example is a random walk model xt = xt−1 + et , where {et } is a white noise is an example of a unit-root process. As many economic and

financial time series are assumed to be such processes, testing for the presence of a unit root is often the first step in economic analysis. If we write
xt = ρxt−1 + et = et +ρet−1 +ρ2et−2 +· · ·. Using he fact that {et } is a white noise, var(xt ) = σ 2

e +ρ2σ 4
e +ρ6σ 2

e +· · ·. The sum converges only if |ρ| < 1.
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