
Physica A 422 (2015) 167–174

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Generalized relative entropies in the classical limit
A.M. Kowalski a,b, M.T. Martin a,c, A. Plastino a,c,∗

a Instituto de Física (IFLP-CCT-Conicet), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 727, 1900 La Plata, Argentina
b Comision de Investigaciones Científicas (CIC), Argentina
c Argentina’s National Research Council (CONICET), Argentina

h i g h l i g h t s

• Statistical quantifiers are compared in their ability to describe feature of the route towards the classical limit.
• The normalized Cressie–Read and relative Tsallis ones are shown to be equivalent.
• The Tsallis quantifier is seen to provide a better description than the Kullback–Leibler one.
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a b s t r a c t

Our protagonists are (i) the Cressie–Read family of divergences (characterized by the pa-
rameter γ ), (ii) Tsallis’ generalized relative entropies (characterized by the q one), and, as a
particular instance of both, (iii) the Kullback–Leibler (KL) relative entropy. In their normal-
ized versions, we ascertain the equivalence between (i) and (ii). Additionally, we employ
these three entropic quantifiers in order to provide a statistical investigation of the classi-
cal limit of a semiclassical model, whose properties are well known from a purely dynamic
viewpoint. This places us in a good position to assess the appropriateness of our statistical
quantifiers for describing involved systems. We compare the behaviour of (i), (ii), and (iii)
as one proceeds towards the classical limit. We determine optimal ranges for γ and/or q.
It is shown the Tsallis-quantifier is better than KL’s for 1.5 < q < 2.5.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Entropic quantifiers (see as examples Refs. [1–4], and references therein) are useful in the study of time series’ underlying
dynamics. Systems that are characterized by either long-range interactions, long-termmemories, ormulti-fractality are best
described by a generalized statistical mechanics’ formalism [5] usually alluded to as deformed, Tsallis’ q-statistics. The basic
associated entity is the entropy [q ∈ R (q ≠ 1)]

Sq =
1

(q − 1)

n
i=1

pi

1 − piq−1 , (1)

pi being probabilities associated with the n different system-configurations. The entropic index (or deformation parameter)
q describes the deviations of Tsallis entropy from the standard Boltzmann–Gibbs–Shannon-one. One has

S = −

n
i=1

pi ln pi. (2)
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Shannon’s entropyworks best for systems composed of either independent subsystems or interacting via short-range forces,
whose subsystems can access all the available phase space [6]. For systems exhibiting long-range correlations, memory, or
fractal properties, Tsallis’ entropy becomes the most convenient quantifier [6–16].

In another vein, we have the Cressie–Read (CR) family of power divergences, defined through a class of additive convex
functions. The CR power divergence measure encompasses a broad family of test statistics that leads to a large family of
likelihood functions. They constitute a family of pseudo-distance measures from which to derive empirical probabilities
associated with indirect noisy micro and macro data [17].

In order to assess how good these quantifiers are to statistically describe complex scenarios, we will apply the above
mentioned quantifiers to a celebrated semiclassical system in its route towards the classical limit [18,19]. The system’s
dynamics exhibits regular zones, chaotic ones and other regions that, although not chaotic, display complex features. The
system has been exhaustively investigated from a purely dynamic viewpoint [19] and also from a statistical one [20–22].
This last kind of study has a pre-requisite: how to extracted information from a time series (TS) [23]. The data at our disposal
always possess a stochastic component due to noise [24,25], so that different extraction-procedures attain distinct degrees
of quality. We will employ the Bandt and Pompe’s approach [26], that determines the probability distribution associated to
time series on the basis of the nature of the underlying attractor (see Appendix for the mathematical details).

Summing up, we will use the normalized versions of Tsallis relative entropy [9,27] and Cressie–Read family of diver-
gences [17], to which we add Kullback–Leibler’s relative entropy. It will be seen that the normalized CR coincides with the
normalized Tsallis relative entropy for a special relationship between q and γ . With these entropies we will compare (i) the
probability distribution functions (PDFs) associated to the system’s dynamic equation’s solutions in their route towards the
classical limit [19] with (ii) the PDF associated to the classical solutions.

The relative entropies mentioned above are discussed in Section 2, which briefly recapitulates notions concerning the
Tsallis relative entropy, the Kullback–Leibler relative entropy and the CR-divergence family of entropic functionals. As a
test-scenario, the semiclassical system and its classical limit are described in Section 3, and the concomitant results are
presented in Section 4. Finally, some conclusions are drawn in Section 5.

2. Kullback–Leibler relative entropy, Tsallis relative entropy and Cressie–Read family of divergences

The relative entropies (RE) quantify the difference between two probability distributions P and Q [28]. They provide an
estimation of how much information P contains relative to Q and measure the expected number of extra bits required to
code samples from P when using a code based on Q , rather than using a code based on P [28]. They can also be regarded as
entropic distances, alternativemeans for comparing the distribution Q to P . The best representative is the Kullback–Leibler’s
(KL) one, based on the Shannon canonical measure (2). For two normalized, discrete probability distribution functions (PDF)
P = (p1, . . . , pn) and Q = (q1, . . . , qn) (n > 1), one has

DKL(P,Q ) =

n
i=1

pi ln

pi
qi


, (3)

with DKLsn(P,Q ) ≥ 0. DKL(P,Q ) = 0 if and only if P = Q . One assumes that either qi ≠ 0 for all values of i, or that if one
qi = 0, then pi = 0 as well [29]. In such an instance people take 0/0 = 1 [29] (also, 0 ln 0 = 0, of course). It is convenient to
workwith a normalized KL-version, for the sake of a better comparison between different results. In thisway the quantifier’s
values are restricted to the [0, 1] interval, via division by its maximum allowable value. If we divide D by ln n, expression
(3) becomes

DN
KL(P,Q ) =

1
ln n

n
i=1

pi ln

pi
qi


, (4)

with 0 ≤ DN
KL ≤ 1. We will work with Eq. (4). KL can be seen as a particular case of the generalized Tsallis relative entropy

[9,27]

Dq(P,Q ) =
1

q − 1

n
i=1

pi


pi
qi

q−1

− 1


, (5)

when q → 1 [9,27]. Dq(P,Q ) ≥ 0 if q ≥ 0. For q > 0 one has Dq(P,Q ) = 0 if and only if P = Q . For q = 0 one has Dq(P,Q )
= 0 for all P and Q .

We pass now to define the Cressie–Read (CR) family of divergence measures [17]:

I(P,Q , γ ) =
1

γ (γ + 1)

n
i=1

pi


pi
qi

γ

− 1


, (6)

where γ is a parameter that indexes members of the CR family. CR differs from Dq(P,Q ) because of the condition I(P,Q , γ )
≥ 0, for all γ . In the two special cases where γ = 0 or −1, the notation I(P,Q , 0) and I(P,Q , −1) are to be interpreted as
the limits, limγ → 0 or limγ → −1, respectively [17]. The γ = 0 case, corresponds to DKL(p, q) [17], mimicking what happens
with Dq(P,Q ) when q → 1. On the other hand, I(P,Q , −1) = DKL(Q , P) [17].
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