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a b s t r a c t

We show, analytically and numerically, that wealth distribution in the Bouchaud–Mézard
network model of the economy is described by a three-parameter generalized inverse
gamma distribution. In the mean-field limit of a network with any two agents linked, it
reduces to the inverse gamma distribution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wealth distribution has become a subject of keen interest in econophysics research [1]. Here, we study a network model
of the economyproposed by Bouchaud andMézard (BM) [2]. In themean field (MF) limit of a completely connected network,
where any two agents in the network are linked, the model yields the inverse gamma (IGa) stationary wealth distribution.
An important feature of the IGa distribution is the power-law (PL) tail [3]. In the opposite limit of a completely disconnected
network, the time-dependent part of wealth distribution is lognormal (LN). Both LN and IGa have long histories inmodels of
wealth distribution. LN is generated by Gibrat’s law [4]. IGa, as well as a specific form of GIGa (generalized inverse gamma
distribution), was used to analyze wealth distribution in ancient Egypt [5].

Souma et al. did a numerical study of the BMmodel and proposed that there may be quite an abrupt transition between
IGa and LN as a function of the number of connections and the type of connections—regular network or a small-world
network [6]. In this paper, we revisit Souma’s simulations and compute the p-values of the fitting distributions using the
Kolmogorov–Smirnov test [7]. We argue that the time-dependent LN distribution is a transient – albeit possibly slow,
depending on theparameters – and concentrate on the stationary solution.We find that for theBMmodel the latter is a three-
parameter GIGa distribution. Theoretically, we develop an effective field theory for the BM model of partially connected
networks, including regular network and a random small-world network [6] and obtain the Fokker–Planck equation (FPE)
for the probability density function (PDF). Its stationary solution is a GIGa distribution, with IGa distribution as its limit in
the MF regime.
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This paper is organized as follows. In Section 2, we discuss the effective field theory of the BMmodel, the corresponding
stationary FPE and its GIGa solution. In Section 3, we present the results of our numerical simulations. In Section 4, we
summarize our findings and outline future directions of our work.

2. Theory

2.1. GIGa from the Bouchaud–Mézard model

The BMmodel reads [2]:

dWi
S
=

√
2σWidBi +


j(≠i)

JijWjdt −


j(≠i)

JjiWidt, (1)

where S
= means that the stochastic differential equation (SDE) is interpreted in the Stratonovich sense [2,6] and i =

1, 2, . . . ,N with N ≫ 1 the total number of agents, Wi is the wealth of an agent, dBi is an independent Wiener process
and σ and Jij are constants. Since the BM model may have a wider range of applications – including possibly neural
networks – than originally intended, we will study it without applying specific interpretations to W and the model
parameters.

The BMmodel in (1) can be rewritten into an Ito SDE [8]:

dWi
I
=

√
2σWidBi + σ 2Widt +


j(≠i)

JijWjdt −


j(≠i)

JjiWidt (2)

in agreement with Souma et al. [6]. Rescaling perWi(t) = wi(t)eσ 2t , we obtain

dwi
I
=

√
2σwidBi +


j(≠i)

Jijwjdt −


j(≠i)

Jjiwidt. (3)

It is easily seen that in the large N limit,
N

i=1 dwi =
√
2σ

N
i=1 widBi ≈ 0, which implies that the total ‘‘wealth’’ fluctuates

around a constant value.
Ultimately, the goal is to determine the PDF P(w, t). Towards this end we notice that there is a discontinuous transition

from the interacting case Jij ≠ 0 to the non-interacting case Jij = 0, that is, as soon as the interaction between the agents
is turned on, the nature of the distribution function is qualitatively changed. Indeed, as follows from Eq. (7.8) in Ref. [8],
P(w, t) does not have a stationary limit for Jij = 0 and decreases to zero for any finite w when t → +∞ (while preserving
the total ‘‘wealth’’):

P(w, t) =
1

2
√

π tσw
exp


−

1
2


logw + σ 2t

√
2tσ

2


. (4)

Conversely, in the Jij ≠ 0, a stationary solution P(w) ≡ P(w, ∞) exists and in what follows we concentrate on its analytical
derivation while leaving dynamics to numerical investigation.

The MF limit of a completely connected network was studied in Ref. [2]. Substituting Jij = J/N in (3) and extending
summation on j to each member of the network, we obtain

dwi
I
=

√
2σwidBi + J(w − wi)dt, (5)

where w = N−1 N
i=1 wi is the average of wi. The corresponding FPE is given by

∂P
∂t

=
∂{[J(w − w) + σ 2w]P}

∂w
+ σ 2 ∂

∂w


w

∂(wP)

∂w


. (6)

Rescaling via w → w/w so that w = 1, we find the normalized stationary IGa solution [2]

P(w) =


σ 2

J

−
J+σ2

σ2

Γ


J+σ 2

σ 2

 e−
J

σ2 w−1
w

−2− J
σ2 (7)

with a PL tail ∝ w−(2+J/σ 2).
For a partially connected network, where each agent is connected with 1 ≤ n = zN ≤ (N − 1) other agents (0 < z < 1),

we substitute Jij = J/n in (3) and notice that
interacting agents: j(≠i)

Jij(wj − wi) = J(w(n)
− wi), (8)
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