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h i g h l i g h t s

• We find that certain bounded quantities are not self-averaging when the correlation length becomes of the order of the size of the
system.

• The lack of self-averaging, expressed in terms of properly chosen signal-to-noise ratios, serves to identify phase boundaries.
• By using such signal-to-noise ratios we identify the boundary of the ferromagnetic phase of the random field Ising system.
• Finallywe argue that the signal-to-noise behaves in a genericway, independent of the specific physical quantity forwhich it is obtained.
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a b s t r a c t

The study of quenched randomsystems is facilitated by the idea that the ensemble averages
describe the thermal averages for any specific realization of the couplings, provided that
the system is large enough. Careful examination suggests that this idea might have a flaw,
when the correlation length becomes of the order of the size of the system. We find that
certain bounded quantities are not self-averaging when the correlation length becomes of
the order of the size of the system. This suggests that the lack of self-averaging, expressed
in terms of properly chosen signal-to-noise ratios, may serve to identify phase boundaries.
This is demonstrated by using such signal-to-noise ratios to identify the boundary of the
ferromagnetic phase of the random field Ising system and compare the findings with more
traditional measures.

© 2014 Elsevier B.V. All rights reserved.

Quenched randomsystems like random field systems, randombond systems, spin glasses, etc., are known to be extremely
difficult, because of the necessity to perform quenched averages. In fact, it has to be realized, of course, that this necessity is
not of physical origin but rather ofmathematical convenience, since a given chunk ofmatter that ismeasured experimentally
has a given single realization of the disorder. The idea of self-averaging allowing ensemble averaging is based on the fact
that we are dealing with very large systems [1]. It is argued that the system can be broken up into subsystems large enough
to be considered independent of each other. This basic assumption indicates that phenomena connected with breakdown of
self-averaging may appear, as the correlation length will become of the order of the linear size of the system. Indeed, such
behavior was first observed by Dayan et al. [2], using a technique first suggested by Berker and Ostlund [3]. The subject of
breakdown of self-averaging was treated later in a number of papers devoted just to that phenomenon [4–7]. Obviously,
lack of self-averaging results in severe difficulties but the fact that it is connected with the divergence of the correlation
length suggests that it can provide, perhaps, an independentmeasure to distinguish between the disordered and the ordered
phases. In this article we show that this is indeed the case.
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To be specific, consider the random field Ising model described by the Hamiltonian

H = −J

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sisj −
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hisi. (1)

The pair ⟨i, j⟩ denotes a nearest-neighbor pair on a cubic lattice. The field configuration is assumed to be governed by the
distribution,
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We take J and h to have the dimensions of energy.
Consider now some thermal average x and its ensemble average, xE ≡ [x], where [. . .] denotes ensemble average. Define

next the variance of xwithin the ensemble,

σx ≡ {[x2] − xE2}
1
2 . (3)

Next, a parameter γ describing the strength of self-averaging in the system (or rather its weakness) is defined as the signal-
to-noise ratio

γx ≡
|xE |
σx

. (4)

The signal-to-noise ratio, γ , as defined above, somewhat resembles the Binder cumulant [8,9], as defined for disordered
systems, though it is simpler and more intuitive.

It is clear that for the disordered phase γ is infinite in the infinite system. As our former discussion suggests, that possible
breakdown of self-averaging may be traced back to situations where the correlation length, ξ , becomes of the order of the
linear size of the system. The usual state of affairs is that the correlation length diverges just at the boundary between the
ordered and disordered phases and consequently any breakdown of self-averaging may be observed only in the vicinity of
the boundary [4–6]. In the random field case the situation is quite different. The correlation length is of the order of the
linear size of the system everywhere in the ordered phase and not just at the boundary of the phase [2].

We describe next our procedure for obtaining numerically the relevant physical quantities, which is based on
Casher–Schwartz RSRG [10]. As other real space techniques, it provides simple, one step, recursion relations for transla-
tional invariant systems that enable the extraction of the critical exponents. For random systems, the recursion relations,
obtained using any renormalization scheme, involve the distribution of couplings or, equivalently, all the parameters defin-
ing it (e.g. moments, correlations, etc.). In this approach, the recursion relations are truncated to obtain relations involving
only the mean and the variance and keeping the random couplings independent [11–14]. The method suggested by Berker
and Ostlund [3] overcomes the most difficult problem arising in the approach described above of ignoring the correlations
generated by the renormalization procedure (or projecting them on the variance [11]). A given realization is chosen on a
finite system. Renormalization is then used to reduce the size of the system to a size where brute force calculation is pos-
sible. (The fact that a lot can be learned from considering specific realizations is also stressed in a paper on the RFIM byWu
and Machta [15].) After the required thermal averages are obtained for a given configuration of the disorder, the ensemble
average is obtained by repeating the procedure for many configurations (here 10,000) and averaging. Only thermal aver-
ages of functions of the spins surviving the renormalization seem to be obtainable directly. Berker and coworkers [16–18]
were using, however, the chain rule, applied to first derivatives, to approximately recover thermodynamic densities of the
original system from the renormalized couplings of the reduced system. This enables to obtain averages which involve not
only surviving spins. As long as higher derivatives are avoided, this procedure is limited, however, to thermal averages of
spin products which already appear in the original Hamiltonian (such as nearest-neighbor pair products). In the following
we will calculate averages involving non-surviving spins using our ‘‘sites translation method’’ [19].

We startwith a set ofN = L3 Ising spins,with L = 2n, situated on a three dimensional cubic latticewith periodic boundary
conditions. Here L = 32 = 25 so thatN = 323

= 32, 768.We generate a realization of the distribution (2) and then perform
the Casher–Schwartz procedure [10] n−1 times. At each step of the renormalization, the lattice remains cubicwhile its linear
size is reduced by a factor of two. The couplings remain nearest-neighbor but become position dependent and each spin is
affected by a renormalized position dependent field. Finally, we are left with a system of 2×2×2 spins onwhichwe perform
direct calculations. Consequently we obtain 8 ⟨si⟩’s, corresponding to the spins that survive the renormalization procedure.
The way a site i on the final renormalized lattice is related to its index on the original lattice may be realized from Fig. 1.

In order to see if anything spectacular happens to the signal-to-noise ratios, we need to know, first, where the ordered
phase boundary is. In Fig. 2(a) we give the logarithm of the susceptibility [19],

χ =
1

8h2
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where hi is the original field on the site i and N is the total number of sites in the original system. The actual ensemble aver-
ages were performed by repeating the calculations for 10,000 realizations of the randomness, summing up the results and
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