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h i g h l i g h t s

• We introduce a new correlation coefficient taking the lag difference of data points.
• We investigate the properties of this new correlation coefficient.
• New correlation coefficient captures the cross-independence of two variables over time.
• New coefficient is compared with the Pearson and DCCA coefficients via simulations.
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a b s t r a c t

The correlation in time series has received considerable attention in the literature. Its
use has attained an important role in the social sciences and finance. For example, pair
trading in finance is concerned with the correlation between stock prices, returns, etc.
In general, Pearson’s correlation coefficient is employed in these areas although it has
many underlying assumptions which restrict its use. Here, we introduce a new correlation
coefficient which takes into account the lag difference of data points. We investigate the
properties of this new correlation coefficient. We demonstrate that it is more appropriate
for showing the direction of the covariation of the twovariables over time.We also compare
the performance of the new correlation coefficient with Pearson’s correlation coefficient
and Detrended Cross-Correlation Analysis (DCCA) via simulated examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Various financial models (such as pairs trading) are concerned with the correlation between two different time-series
data, e.g., stock prices or returns. Pearson’s product moment correlation coefficient is the most commonly used estimator
in measuring such correlations. However, there are many underlying assumptions (such as stationarity) for the validity of
this coefficient [1].

If a sample set of time-series data is stationary, then the population’s mean, variance, and covariance between any two
different dates can be estimated based on the sample. If a data is nonstationary, then it violates certain assumptions while
estimating these parameters. In general, price series are assumed to be non-stationary, whereas returns are assumed to be
stationary. Thus, using Pearson’s formula for the calculation of correlation between two price series is not appropriate [2].
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Fig. 1. An illustration of directionality detection problem. Note:


Xt points (diamond) are generated as Xt = 11 − t and
Yt points (square) are generated as Yt = t − 1 for t = 1 to11 and Yt = t − 22 for t = 12

to 21
.

Apart from stationarity, there is another drawback about Pearson’s correlation coefficient: it is concerned with the
distance of two variables from their means. Assuming that we are interested in two variables that move in the opposite
direction while at the same time being both above or below their means. If both of the variables are above (or below)
their means, the sum of multiplication of the two variables’ deviations from their means will positively contribute to
the numerator in Pearson’s formula and hence to the correlation coefficient, although the variables move in the opposite
direction. The following example (Fig. 1) may illustrate this problem:

In this example, themeans of both of the variables is 0, and they are above their means between t = 0 and t = 11, below
their means between t = 12 and t = 21. Although the variables are moving in the opposite direction almost all the time,
Pearson’s correlation coefficient, denoted as ρp, is 0.50.

A similar idea holds true when two variables move in the same direction while one of the variables is above its mean
whereas the other variable is below its mean. In this case, the sum of multiplication of the two variables’ deviations from
their means will negatively contribute to the numerator in Pearson’s formula and hence to the correlation coefficient, even
though the variables move in the same direction.

In this article we propose a new correlation coefficient that measures the distance between two subsequent data points
by taking the lag difference into consideration. Although the very first data point is lost, we demonstrate that the new
correlation coefficient better captures the direction of the covariation of the two variables over time.We also propose various
extensions of this coefficient in order to obtain more reasonable and reliable results at the expense of having more complex
formulas.

The paper proceeds as follows: we present preliminaries in Section 2. In Section 3, we introduce the new correlation
coefficient and discuss its properties. We exhibit a series of simulations to show the characteristics of the new correlation
coefficient in Section 4. Furthermore,we conclude ourwork and point to prospective research directions in Section 5. Finally,
we present the matrix forms of correlation coefficients in the Appendix.

2. Preliminaries

Let Pi,t (hereafter Pit for today, Pi,t−s for a lagged time of s units) represents the price of asset i at time t . We will denote
the entire sequence of values {Pi1, Pi2, . . . , PiT } as {Pit}.

The simple return of asset i at time t is defined as:

Rit =
Pit − Pi,t−1

Pi,t−1
. (1)

Similarly log-return is defined as:

rit = log

Pit/Pi,t−1


. (2)

Let {Xt} be a kind of stochastic process; we define the stationarity as follows: a stochastic process {Xt} having a finite mean
and variance is said to be stationary, if for all t and t − s:

E (Xt) = E (Xt−s) = µ (3)

E

(Xt − µ)2


= E


(Xt−s − µ)2


= σ 2 (4)

E [(Xt − µ) (Xt−s − µ)] = E

Xt−j − µ

 
Xt−j−s − µ


= γ(s) (5)

where µ, σ 2, γ(s) are all constants i.e., independent of time [3].
In practice, stock prices may be assumed as non-stationary, whereas simple and log returns may be assumed to be

stationary [2]. Furthermore, conventionally logarithm of stock prices are assumed to follow Geometric Brownian Motion [4]
which means that log-returns are assumed to be normally distributed.
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