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h i g h l i g h t s

• A novel abstract network approach to describe spatiotemporal reactive processes.
• Proposed approach is applicable to any reactive system, with and without diffusion.
• Current approach is extendable in higher dimensions and different coordination numbers.
• Knowing system’s phase space trajectories suffices for abstract network construction.
• Lattice Limit Cycle model: corresponding phase space abstract network is scale free.
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a b s t r a c t

An abstract network approach is proposed for the description of the dynamics in reactive
processes. The phase space of the variables (concentrations in reactive systems) is
partitioned into a finite number of segments, which constitute the nodes of the abstract
network. Transitions between the nodes are dictated by the dynamics of the reactive
process and provide the links between the nodes. These are weighted networks, since
each link weight reflects the transition rate between the corresponding states–nodes.
With this construction the network properties mirror the dynamics of the underlying
process and one can investigate the system properties by studying the corresponding
abstract network. As a working example the Lattice Limit Cycle (LLC) model is used. Its
corresponding abstract network is constructed and the transition matrix elements are
computed via Kinetic (Dynamic) Monte Carlo simulations. For this model it is shown
that the degree distribution follows a power law with exponent −1, while the average
clustering coefficient c(N) scales with the network size (number of nodes) N as c(N) ∼

N−ν , ν ≃ 1.46. The computed exponents classify the LLC abstract reactive network into
the scale-free networks. This conclusion corroborates earlier investigations demonstrating
the formation of fractal spatial patterns in LLC reactive dynamics due to stochasticity and
to clustering of homologous species. The present construction of abstract networks (based
on the partition of the phase space) is generic and can be implemented with appropriate
adjustments in many dynamical systems and in time series analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A large variety of natural, technological and social systems which require cooperation between many individual units
operate in the form of networks. Depending on the type of exchange between the network nodes, two important network
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categories are distinguishable: the spatial networks and the social networks [1,2]. Spatial networks are characterised by
matter exchange between their nodes. Typical spatial networks are the large infrastructure networks, such as the trans-
portation network, the road-map network, the airline and railway networks, electricity distribution network, and water-
pipe networks [3,4]. An important class of spatial networks is the biological networks, which include the neuron networks,
the blood vessels networks, the bronchial tree, the plant root network, etc. In the secondmajor category, the social networks
information is shared and exchanged between nodes. This category includes the Internet, Facebook, LinkedIn, Twitter, the
authors network, the actors network, the classmates networks, etc. [3,5]. Both above categories have received considerable
attention and are presented extensively in several review papers and books in the past 15 years (see Refs. [1,2,6,7]).

A third category, which has received less attention is the ‘‘state-space’’ networks or the ‘‘phase–space’’ networks. This
category accounts for systems transiting between various states and are often associated with time series [8–10]. For such
systems we can define the corresponding ‘‘abstract networks’’ whose nodes are the different states and whose links are the
transitions rates from one state to another. As such, the abstract networks are classified in the class of weighted networks,
since the links between the various states/nodes are weighted by the transition probabilities. The current study focuses on
the properties of the abstract state network representing a reactive system, when its continuous phase space is segmented
into a discrete number of nodes (network of states).

In previous studies abstract networks which result from the dynamics of symbol sequences with specific applications
in DNA sequences, in motif recognition and in chaotic maps have been considered [11,12]. These networks are based on
discrete state spaces which consist of finite sequences of symbols. The nodes are identified with finite symbol combinations
orwith specificmotifs, while the links are identified eitherwith proximity [11] orwith coexistence [12] of the variousmotifs.
Abstract networks in the form of graphs have also been studied in connection to biological and chemical processes as early as
1970s [13]. The graph theory was used in Ref. [13] for the solution of the master equation, describing the transitions of two
models (chemical Schlögl model and biological membrane pore model) between their discrete state spaces. Both models
involve a single variable and they are described at the Mean Field (MF) level.

Unlike in the above cases, in the current study the state space (phase space) is continuous. In reactive dynamics where a
number of species n are involved, with species concentrations xi, i = 1, . . . , n, the phase space is n-dimensional. Normally,
the concentration variables are normalised (partial concentrations), and thus xi’s are continuous variables which can take
values in the range 0 ≤ xi ≤ 1. Since network theory is based on a finite number of nodes, the n-dimensional phase space
needs to be appropriately partitioned, as will be discussed in Section 2.

As working reactive model the Lattice Limit Cycle (LLC) is used. The LLC model belongs to the class of predator–prey
systemswith the additional features that (a) it possesses a stable limit cyclewith dissipative global oscillations of the species
concentrations at the MF level and (b) it is lattice compatible, i.e. it can be directly implemented on a lattice conserving the
number of lattice sites, without the need to modify its dynamics [14–17]. The phase space of LLC is 3-dimensional initially,
but it is reduced to 2-dimensional due to the lattice compatibility condition. It is implemented here via Kinetic Monte Carlo
(KMC) simulations where stochastic effects and local interactions are taken into account. The lattice KMC realisations of
this model give rise to fractal spatial patterns which spontaneously form due to the cooperation of the nonlinearity of the
interactions and the spatial restrictions.

The reason for using the LLCmodel as an example for the construction of the phase space abstract network is the complex
fractal patterns which are formed during the system’s evolution and which could give rise to nontrivial transition rates
among the nodes of the corresponding abstract network. As it will be shown in the next sections the elements of the
transitionmatrix have a long range distribution and the abstract network belongs to the class of scale free networks [1,6,18].

In the next section we propose and describe the abstract network representation of the reactive processes. In Section 3
the general features of the LLC reactive system are recapitulated, both at theMF level and using KMC simulations to account
for spatial and stochastic effects. In Section 4 we calculate the abstract network transition matrix, the degree distribution
and the average clustering coefficient which demonstrate the network’s scale free character. Finally, we recapitulate the
main results in the concluding section and we discuss open problems.

2. Abstract networks of reactive dynamical systems

The term abstract networks in reaction–diffusion systems proposed and developed here should not be confused with the
classical field of ‘‘Chemical Reaction Networks’’ which has a long research history, mostly in Theoretical Chemistry [19,20].
In the classical literature scientists refer to a ‘‘network of chemical reactions’’ or to a ‘‘Chemical Reaction Network’’ (CRN) as
a finite set of reactions among a finite set of chemical species. In CRNs often the products of one reaction serve as reactants in
others. CRNs findmultiple applications in Biochemistry and Analytical Chemistry and even in Catalysis [21–23]. The classical
CRNs, in their spatial representations, can also serve under certain conditions as a reaction (or reaction–diffusion) system
for the construction of the corresponding abstract network as will be described in the sequel.

In the present study we consider an abstract network of nodes, each node being an appropriately chosen segment of the
state space of a reaction–diffusion system. Thus the dynamics of the system is mirrored on the transitions of the network
from one part of the state space to another. To bemore precise, consider a number n of reactants Xi, i = 1, . . . , n involved in
a number of reactions. The reactive scheme for the time being need not be explicitly written and it can involve any number
of reactions; even one reaction is enough for the definition of the abstract network. During the reactive process the various
species Xi are represented by respective partial concentrations. These partial concentrations change with time and they are
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