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Abstract

Modelling stochastic systems has many important applications. Normal form coordinate transforms are a powerful way

to untangle interesting long term macroscale dynamics from insignificant detailed microscale dynamics. We explore such

coordinate transforms of stochastic differential systems when the dynamics have both slow modes and quickly decaying

modes. The thrust is to derive normal forms useful for macroscopic modelling of complex stochastic microscopic systems.

Thus we not only must reduce the dimensionality of the dynamics, but also endeavour to separate all slow processes from

all fast time processes, both deterministic and stochastic. Quadratic stochastic effects in the fast modes contribute to the

drift of the important slow modes. Some examples demonstrate that the coordinate transform may be only locally valid or

may be globally valid depending upon the dynamical system. The results will help us accurately model, interpret and

simulate multiscale stochastic systems.
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1. Introduction

Normal form coordinate transformations provide a sound basis for simplifying multiscale nonlinear
dynamics [e.g. 1,2]. In systems with fast and slow dynamics, a coordinate transform is sought that decouples
the slow from the fast. The decoupled slow modes then provide accurate predictions for the long term
dynamics. Arguably, such normal form coordinate transformations provide a much more insightful view of
simplifying dynamics than other, more popular, techniques. Averaging is perhaps the most popular technique
for simplifying dynamics [e.g. 3, Chapters 11–13], especially for stochastic dynamics that we explore here
[e.g. 4,5]. But averaging fails in many cases. For example, consider the simple, linear, slow–fast system of
stochastic differential equations (SDEs)

dx ¼ �ydt and dy ¼ �ydtþ dW , (1)
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where for small parameter � the variable xðtÞ evolves slowly compared to the fast variable yðtÞ. Let us compare
the predictions of averaging and a ‘normal form’ coordinate transform. First consider averaging: the fast
variable y, being an Ornstein–Uhlenbeck process, rapidly approaches its limiting PDF that is symmetric in y.
Then averaging the x equation leads to the prediction dx̄ ¼ 0 dt ; that is, averaging predicts nothing happens.
Yet the slow x variable must fluctuate through its forcing by the fast y. Second, and similar to illuminating
coordinate transforms explored in this article, modify the x and y variables to new coordinates X and Y where

x ¼ X � �Y þ �

Z t

�1

et�t dW t and y ¼ Y þ

Z t

�1

et�t dW t. (2)

In the X and Y coordinates the SDE system (1) decouples to simply

dX ¼ �dW and dY ¼ �Y dt. (3)

In these new coordinates Y ! 0 exponentially fast. Thus in the long term the only significant dynamics occurs
in the modified slow variable X which system (3) shows undergoes a random walk. The method of averaging
completely misses this random walk: true, the mean x̄ remains at zero; but the growing spread about the mean
is missed by averaging. Stochastic coordinate transforms such as (2) decouple fast and slow variables to
empower us to extract accurate models for a true slow variable X. They are called ‘normal form’
transformations because this decoupling of stochastic dynamics is analogous to corresponding simplifications
in deterministic systems [e.g. 6,7]. This article establishes useful properties for such stochastic normal form
coordinate transformations in modelling multiscale nonlinear stochastic dynamical systems.

One great advantage of basing modelling upon coordinate transforms is that exactly transformed dynamics
fully reproduce the original dynamics for all time and all state space. It is only when we approximate the
transformed dynamics that errors occur. Consequently, modelling errors can be much better controlled.

Stochastic ODEs and PDEs have many important applications. Here we restrict attention to nonlinear SDEs
when the dynamics of the SDE has both long lasting slow modes and decaying fast modes [e.g. 8]. The aim
underlying all the exploration in this article is to derive normal forms useful for macroscopic modelling of
stochastic systems when the systems are specified at a detailed microscopic level. Thus we endeavour to
separate all fast time processes from all slow processes [e.g. 9,10]. Such separation is especially intriguing in
stochastic systems as white noise has fluctuations on all time scales. In contrast, almost all previous
approaches have been content to derive normal forms that support reducing the dimensionality of the
dynamics. Here we go further than other researchers and additionally and systematically separate fast time

processes from the slow modes.

Arnold and Imkeller [8,7] developed a rigorous body of theory to support stochastic coordinate transforms
to a normal form. They comment that the normal form transformation involves anticipating the noise
processes, that is, involving integrals of the noise over a fast time scale of the future. However, in contrast to
the examples of Arnold and Imkeller [8] and [7, corrected], Sections 2 and 3 argue that such anticipation can
be always removed from the slow modes with the result that no anticipation is required after the fast transients
decay. Furthermore, Sections 2 and 3 argue that on the stochastic slow manifold (SSM) all noise integrals can
be removed from terms linear in the noise to leave a slow mode system, such as the simple dX ¼ �dW of the
normal form (3), in which there are no fast time integrals at all. The arguments demonstrate that, except for
some effects nonlinear in the noise, all fast time processes can be removed from the slow modes of a normal
form of stochastic systems.

The theory of Arnold and Imkeller [8,7] applies only to finite dimensional stochastic systems. Similarly, Du
and Duan’s [11] theory of invariant manifold reduction for stochastic dynamical systems also only applies in
finite dimensions. But many applications are infinite dimensional; for example, the discretisation of stochastic
PDEs approximates an inertial manifold of stochastic dynamics [10]. Following the wide recognition of the
utility of inertial manifolds [e.g. 12], Bensoussan and Flandoli [13] proved the existence of attractive stochastic
inertial manifolds in Hilbert spaces. The SSMs obtained in Sections 2–4 via stochastic normal forms are
examples of such stochastic inertial manifolds, albeit still in finite dimensions.

To derive a normal form we have to implement a coordinate transformation that simplifies a stochastic
system. But the term ‘simplify’ means different things to different people depending upon how they wish to use
the ‘simplified’ stochastic system. Our aim throughout this article is to create stochastic models that may
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