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h i g h l i g h t s

• We study a null model for frequencies of patterns of rises and falls in data series.
• The probability of a long pattern typically decays exponentially with its length.
• The associated decay rate is interpreted as the embedding entropy of the pattern.
• The entropy is evaluated exactly for all families of periodic patterns.
• The entropy of random patterns obey non-trivial multifractal statistics.
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a b s t r a c t

We investigate the probability of observing a given pattern of n rises and falls in a ran-
dom stationary data series. The data are modeled as a sequence of n+ 1 independent and
identically distributed random numbers. This probabilistic approach has a combinatorial
equivalent, where the data are modeled by a random permutation on n + 1 objects. The
probability of observing a long pattern of rises and falls decays exponentiallywith its length
n in general. The associated decay rate α is interpreted as the embedding entropy of the
pattern. This rate is evaluated exactly for all periodic patterns. In the most general case,
it is expressed in terms of a determinant of generalized hyperbolic or trigonometric func-
tions. Alternating patterns have the smallest rate αmin = ln(π/2) = 0.451582 . . . , while
other examples lead to arbitrarily large rates. The probabilities of observing uniformly cho-
sen random patterns are demonstrated to obey multifractal statistics. The typical value
α0 = 0.806361 . . . of the rate plays the role of a Lyapunov exponent. A wide range of ex-
amples of patterns, either deterministic or random, is also investigated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a data series, such as e.g. the daily temperature at a given weather station over one year. The most obvious
features of such a data series are its rises and falls. Physics and other branches of science provide plenty of examples of
datasets where the statistics of geometrical features, such as maxima and minima, or rises and falls, is of central interest.
One example from statistical physics is provided by energy landscapes, which are ubiquitously present in theoretical studies
of systems ranging from glasses to proteins [1].

In this work we investigate the probability of observing a given pattern of n rises and falls in a random stationary data
series. This question has hardly been addressed so far in the physics literature, in strong contrast with the statistics of
extreme values, which has recently attracted a lot of attention in many areas, including randomwalks, disordered systems,
growth processes and randommatrices [2–7].
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The setting of the present work is meant to provide a null model, to which real data could be compared. A first attempt
has been made recently in this direction, with the analysis of microarray time series data in genetics [8]. Wemodel the data
series as a sequence of n + 1 i.i.d. (independent and identically distributed) random numbers xi drawn from a continuous
distribution. As these random numbers will only occur in inequalities, their distribution can be chosen to be uniform on the
unit interval. This probabilistic approach is exposed in Section 3. An equivalent combinatorial approach (see Section 4) is
obtained by coarse-graining the random numbers according to the permutation which brings them to an increasing order.
We are thus led to model the data as a uniformly chosen random permutation on n + 1 objects. This line of thought dates
back to the pioneering study of alternating permutations by André [9,10], and it has since then been addressed regularly in
the mathematical literature [11–28] (this list of references is not meant to be exhaustive). To close, let us mention that the
combinatorial approach to our problem pertains to the more general topic of patterns in permutations, which has been for
long an active area of discrete mathematics [29–31].

2. Summary of results

Our goal is to provide a comprehensive and self-contained exposition of the calculation of the frequencies of patterns of
rises and falls in a random stationary data series. We aim at using a language accessible to a broad readership in statistical
physics. Let us give the detailed setup of this paper and summarize our findings.

The probabilistic and combinatorial approaches, respectively exposed in Sections 3 and 4, provide two equivalent
definitions of the probability Pn(ε1 . . . εn) of observing a given pattern ε1 . . . εn of n rises and falls. The equivalence between
both approaches has already been underlined in several works [8,21,23–25,27,28]. It will become clear in the following that
each approach has its advantages: the probabilistic one ismore suitable for analytical investigations,while the combinatorial
one results in a simple recursive structure, lending itself to exact numerical calculations.

In Section 5we show explicit results for small patterns (up to n = 4).We then present a heuristic analysis demonstrating
that the probability of observing a pattern is essentially determined by its excursion, as long as its length is modest.

In the remainder of the paper, the emphasis is on asymptotic properties in the regime of most interest, at least from the
viewpoint of statistical physics, i.e., where the length n of the pattern is large. In this regime the probability Pn(ε1 . . . εn)
typically falls off exponentially as

Pn ∼ e−αn. (1)

The decay rate α will be our central object of interest. This quantity can be viewed as the embedding entropy of the binary
pattern ε1 . . . εn, i.e., the entropic cost per unit length for embedding this pattern into a sequence of i.i.d. random numbers. It
is worth noticing that the above definition is entirely parameter-free. If all the 2n patterns of length n had equal probabilities
Pn = 2−n, the rate would be constant and equal to α = ln 2. The observed wide range of possible values of the rate α, from
αmin = ln(π/2) = 0.451582 . . . to infinity, testifies the richness of the problem.

Periodic patterns are investigated in Sections 6–8. As already mentioned, the subject is an old classic of discrete math-
ematics. Our comprehensive approach allows us to recover many known results by more elementary means, and often to
express them in simpler terms. Section 6 is a self-contained presentation of some of the beauties of the historical example
of alternating patterns, for which the rate α assumes its minimal value αmin. Section 7 deals with the family of p-alternating
periodic patterns, whose motif (unit cell) consists of p− 1 rises followed by a fall. The rate reads α = ln z0, where z0 is the
smallest real positive zero of a generalized trigonometric function. In Section 8 we show how the rate α can be evaluated
exactly for an arbitrary periodic pattern, with any period p ≥ 2: z0 is now the smallest zero of a determinant of generalized
hyperbolic or trigonometric functions, whose size is at most p/2. Many examples are treated explicitly.

The rest of the paper covers entirely novel areas. Sections 9 and 10 serve as an intermezzo. In Section 9 we deal with
examples of aperiodic patterns which are built from three classical self-similar sequences: Fibonacci, Thue–Morse, and
Rudin–Shapiro. The probabilities Pn exhibit an exponential decay, characterized by a well-defined rate α, modulated by
a fractal amplitude which reflects the self-similarity of the underlying sequence. Section 10 is devoted to chirping patterns,
consisting mostly of rises, whereas falls are more and more scarce (or vice versa). In this case the probabilities Pn are found
to decay super-exponentially. Their asymptotic form is predicted more precisely in the situation of most interest where the
density of falls follows a power law.

Section 11 is devoted to the heart of the problem, namely the statistics of the probabilities Pn if patterns are chosen in
various ensembles of randompatterns of fixed length n. The uniform ensemble, where all patterns are consideredwith equal
weights, is studied thoroughly. The probabilities Pn of generic patterns have the typical rate α0 = 0.806361 . . . The latter
number can be interpreted as a Lyapunov exponent. Thewhole set of probabilities Pn is shown to obeymultifractal statistics,
with a non-trivial spectrum of multifractal dimensions f (α), increasing from f (αmin) = 0 to f (α0) = 1. Other ensembles
of random patterns of fixed length n, namely the ensemble at fixed concentration c of rises and a symmetric Markovian
ensemble defined by a persistence probability r , are also investigated. The probabilities Pn now generically decay according
to effective typical rates β(c) and γ (r), which depend continuously on the ensemble parameters.

Two appendices are respectively devoted to the explicit correspondence between the combinatorial and probabilistic
approaches (Appendix A) and to generalized hyperbolic and trigonometric functions (Appendix B).
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