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h i g h l i g h t s

• The collision theory reaction rate coefficient for power-law distributions is derived.
• The power-law rate coefficient strongly depends on the power-law parameter.
• The new collision theory can overcome the difficulties in the Lindemann–Christiansen mechanism.
• The new pre-exponential factor calculated is exactly in agreement with the measurements of experimental studies.
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a b s t r a c t

The collision theory for power-law distributions and the generalized reaction rate
coefficient are studied when reactions take place in nonequilibrium systems with power-
law distributions. We obtain the power-law reaction rate coefficient, and by numerical
analyses we show a very strong dependence of the rate coefficient on the power-law
parameter. We find that the power-law collision theory can successfully overcome the
two difficulties of the Lindemann–Christiansen mechanism. We take three reactions as
examples to calculate the new pre-exponential factor and yield the values that can be
exactly in agreement with those measured in the experimental studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Calculations of reaction rate coefficients are of an inter-discipline of nonlinear science, and are very important for us
to study and understand many basic problems appearing in many different physical, chemical, biological and technical
processes. There have been various reaction rate theories that have been developed to calculate reaction rate coefficients,
among which the collision theory is an old and foundational one [1]. Other reaction rate theories, such as transition state
theory, Kramers rate theory, and unimolecular rate theory, all borrow the idea from the collision theory [1–3]. More
important, analysis of the collision phenomena plays a central role in almost all investigations of structures of matters on
microscopic scale. For the collisions between two molecules A and B, all molecules are assumed to comply with a statistical
distribution of thermodynamic equilibrium, and thus Boltzmann–Gibbs (BG) statistics naturally becomes the statistical base
of the collision theory. In this way, conventionally the collision theory reaction rate coefficient is given in the form with an
exponential law [1] by

kcol = πd2AB


8kBT
πµ

exp (−βεc) , (1)
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where dAB is the distance between the centres of molecules A and B, kB is Boltzmann constant, T is temperature, µ is a
reduced mass defined with the masses of A and B, mA and mB, by µ = mAmB/ (mA + mB), εc is the critical energy of a
molecule at which the reaction happens, and β = (kBT )−1 is Lagrangian multiplier.

However, asweknow, chemical reactions are generally far away fromequilibrium, the statistical propertymaynot always
follow BG statistics and therefore does not have to be an exponential-law distribution. A lot of theoretical and experimental
works have shown that power-law distributions can be quite common in the physical, chemical, biological and technical
processes taking place in complex systems (see [4] and the references therein). In a reacting system, particles that escape
over the barrier would result in a perturbation about the Maxwell–Boltzmann distribution in the well [2]. Here we can
introduce the power-lawdistribution in nonextensive statisticalmechanics [5]. The power-law ν-distribution can bewritten
by

P(ε) ∼ [1 − (ν − 1)βε]
1

ν−1 , (2)

if the energy ε is small. Or, we can write P(ε) ∼ ε−α if the energy ε is large [4]. The power-law ν-distribution represents
the statistical property of a complex system being at a nonequilibrium stationary-state [6,7]. Eq. (2) can be reduced to a BG
distribution if the ν-parameter is set ν → 1, where the parameter ν ≠ 1 measures a distance away from equilibrium [4].
The power-law distributions in complex systems have been noted prevalently in the processes such as single-molecule
conformational dynamics [8,9], chemical reactions [10–12], gene expressions [13], cell reproductions [14], complex cellular
networks [15], and small organicmolecules [16]. In these processes, the reaction rate coefficientsmay be energy-dependent
(and/or time-dependent [17,18]) with power-law forms [19,20], which are beyond the reaction rate formulae in the collision
theory governed conventionally by the form of BG exponential laws. In these cases, the reaction rate formulae become
invalid and so need to bemodified. Most recently, the transition state theorywas generalized to the nonequilibrium systems
with power-law distributions [19], and the power-law reaction rate coefficient was studied for an elementary bimolecular
reaction [21]. In addition, the nonextensive survival probability and the associated Kramers rate were studied by using
nonextensive formalism [22], the mean first passage time for power-law distributions [23] and the escape rate for power-
law distributions in both overdamped systems and low-to-intermediate damping [24,25] were also studied. As we can
imagine, this is a complicated and exciting field in exploring the understanding of nonequilibrium reaction rate theory. The
purpose of this work is to generalize the collision theory reaction rate formula to a nonequilibrium system with power-law
distributions.

The paper is organized as follows. In Section 2, we study the collision theory for the power-law distribution and derive
the rate power-law coefficient formula. In Section 3, we make numerical analyses of the dependence of the new rate
coefficient on the quantities such as ν-parameter, temperature and critical energy. In Section 4, we apply the new theory
to the Lindemann–Christiansen mechanism [26]. In Section 5, we take three examples of chemical reactions to calculate
the pre-exponential factor and to compare with the experiment studies. Finally, in Section 6 we give conclusions and
discussions.

2. The power-law collision theory

As a first step of the generalization of the collision theory rate formulae to the complex systems with power-law
distributions, we follow the standard line in textbooks to derive the reaction rate formula in the power-law collision theory.
For the simple collision theory, because it is not actually satisfactory as a theoretical hypothesis for polyatomic systems, we
will restrict this type of calculation to a simple system.

To calculate the collision number per unit time in the system, a molecule model is needed. The simplest approach is a
system involving two gases, A and B, whose molecules behave as hard spheres characterized by the impenetrable radii rA
and rB. The collision between A and B occurs when their centres approach within a distance dAB, such that dAB = rA + rB.
If we assume that the molecules of B are fixed and those of A move with an average velocity ūA, each molecule A sweeps a
volume πd2ABūA per unit time which contains stationary molecules of B. The area σp = πd2AB, is known as the collision cross
section. If there are NB/V molecules of type B per unit volume, the number of collisions of a molecule of type A with the
stationary molecules B will be zAB = πd2ABūANB/V . If the total number of molecules of A per unit volume is NA/V , then the
total number of collisions of A with B per unit volume (collision density) is given [1] by

ZAB = πd2ABūA
NANB

V 2
, (3)

where, as indicated above, we have assumed that the molecules of B are stationary to obtain the expression. In practice, for
each pair of molecules A and B involved in a collisional trajectory, we can define a relative velocity uAB, which is related to
their velocities uA and uB by u2

AB = u2
A + u2

B − 2uAuA cos θ . The value of cos θ can vary between −1 and 1. As all values of θ
between 0 and 2π are equally probable, the positive and negative values of cos θ will cancel out for the square of uAB, and
the mean value will be zero, so one obtains ū2

AB = ū2
A + ū2

B [1]. We would have uA = uAB if we assumed the molecule B is
stationary.
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