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h i g h l i g h t s

• We propose a fast local expansion algorithm for community detection named LSE.
• It uses quality function that enables detecting communities independently of their sizes that can be of different densities.
• The proposed algorithm can detect multiresolution community from a source vertex.
• The experimental results verify that LSE can uncover rich information on networks.
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a b s t r a c t

In complex networks such as computer and information networks, social networks
or biological networks a community structure is a common and important property.
Community detection in complex networks has attracted a lot of attention in recent years.
Community detection is the problem of finding closely related groups within a network.
Modularity optimisation is a widely accepted method for community detection. It has
been shown that the modularity optimisation has a resolution limit because it is unable
to detect communities with sizes smaller than a certain number of vertices defined with
network size. In this paper we propose a metric for describing community structures
that enables community detection better than other metrics. We present a fast local
expansion algorithm for community detection. The proposed algorithm provides online
multiresolution community detection froma source vertex. Experimental results show that
the proposed algorithm is efficient in both real-world and synthetic networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks commonly hide a community structure, while groups of vertices of networks are more densely
connected to each other than to other vertices [1]. A precise common definition of communities is still lacking. Many
methods have been proposed using different definitions. The problem is made more difficult because in reality these
communities often overlap, such that each vertex may occur in more than one community and communities can have
different hierarchical orders.

Different community detection methods have been proposed that seek to identify natural groups of related vertices
within networks (for review see Ref. [2]). Two distinct types of identified communities are possible. In crisp communities
each vertex belongs fully to one community of which it is a member and no overlapping is identified. In overlapped
communities each vertex belongs to more communities to a different extent.
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Community detection is the process of finding dense groups on graphs such as web-pages having the same topics,
substances within the metabolic, chemical or biological networks or groups of friends within social networks. Community
members have more common properties amongst themselves than with non-members of the community and the
identification of community structure canhelpwhen analysing the functionalities of networks [3]. Each dense groupwithin a
network is expected tomatch-up to the individual functions performed by that network, such that functions can be inferred
from topology.

Many complex systems in the real-world may be represented as networks. A network can be modelled using a graph
G(V , E)with a set of verticesV = (v1, v2, . . . , vn) thatmodels objects and a set of edges E thatmodels relationships between
objects. Edges connect pairs of vertices that interact within the complex metabolic, biological or social systems or they are
just similar enough, or connected as in citation networks. Individual vertices are connected with edges which describe
a certain degree of interaction between vertices. Communities are defined as natural groups of densely interconnected
vertices that are only sparsely connected to the rest of the network. Community detection methods find the partition
P = C1
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

· · ·


Cm where C1, C2, . . . , Cm are sets of vertices called clusters or communities that can be disjointed
or can overlap.

A brief overview of efforts towards efficient community detection follows. Different measures have been proposed to
measure the quality of division of a network into communities. Global criterion requires knowledge of the entire network.

Since global methods are inappropriate when working with large and dynamic networks or when real-time results
are expected, several techniques have been proposed to identify local community structure. The most popular methods
based on the optimisation of quality function named modularity QN was introduced by Newman and Girvan [4]. Newman
reformulated modularity in terms of eigenvectors of a new characteristic matrix for the network and obtained a time
complexity O(n2 log n) for sparse graphs. (See Ref. [5] for details.)

The idea of modularity Q is that vertices linked in a randomway should not form communities. Modularity QN measures
the fraction of the edges that fall within the given groups minus the expected such fraction if edges were distributed at
random:
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where li is the total number of internal edges for subgraph Ci and the total number of edges in the subgraph Ci is di: di =
j∈Ci

kj; kj is the total number of edges connected with a vertex j, and L is the total number of edges in graph G : L =

1
2


j∈G kj. The bigger theQN the better the partition.QN quantifies the difference in the density of the internal edges from the

expected edge density in an equivalent networkwith a similar number of vertices, that are connected randomly. In a random
graph each vertex can be connected to any other vertex of the network. However in very large networks the number of edges
between two groups decreases and a single edge between the two groups can represent a strong correlation between two
groups that can result in merging of these two groups. Optimising modularity QN within large networks fails to detect small
communities. It has been shown that modularity has a resolution limit as it cannot detect communities with sizes smaller
than a threshold, depending on the network size [6]. An algorithm for the optimisation of modularity measure QN needs
to be a global method that requires complete knowledge of the entire network (total number of edges L). Many networks
are large such as huge social networks or the Internet, and their sizes grow over time. It is impossible for such networks to
know the entire network and its global structure. Therefore such global community detection methods are inappropriate
for handling large real-world networks. Local community detection methods that can be used for only part of a network are
necessary.

Several methods have been proposed recently using local edge structure. Clauset [7] has proposed a local modularity
measure R for the sharpness of a community’s border B. He has proposed an algorithm that infers a hierarchy of vertices that
enclose a given vertex by exploring a graph one vertex at a time. The algorithm adds the neighbouring vertex that results in
the largest increase or smallest decrease in R to current community. This process continues until it has agglomerated either
a given number of vertices k or the increase of R is below some threshold.

R = Bin/(Bin + Bout) (2)

where Bin is the number of edges that connect the boundary vertices with other vertices in a community C and Bout is
the number of edges that connect the boundary vertices with those vertices from graph G that is not in community C .
Communities are detected by local optimisation of a local modularity metric that only considers vertices on the boundary
of a subgraph.

A divisive heuristic based on modularity maximisation that is locally optimal in the sense that each of the successive
bipartition is done in a provably optimal way has already been proposed [8]. The proposed heuristics provides better results
than the agglomerative heuristic of Clauset et al.

Bagrow et al. [9] proposed amethod for detecting local communities. It spreads an l-shell outward from a starting vertex.
In each step all neighbour vertices of vertices included in the shell are added. l is the distance from the starting vertex to
all shell vertices. The process of spreading stops when the total emerging degree tends to increase more than some given
threshold and a community is found. The emerging degree of a vertex is defined as the number of edges that connects that
vertex to vertices the l shell has not already visited as it expanded from previous l− 1, l− 2 . . . shells. This approach works
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