
Physica A 383 (2007) 291–308

Fractional dynamics of systems with long-range space
interaction and temporal memory

Vasily E. Tarasova,b,�, George M. Zaslavskya,c

aCourant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA
bSkobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia

cDepartment of Physics, New York University, 2-4 Washington Place, New York, NY 10003, USA

Received 8 January 2007

Available online 27 April 2007

Abstract

Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle

for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a

fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations. As another example, dynamical

equations for particle chains with power-law interaction and memory are considered in the continuous limit. The obtained

fractional equations can be applied to complex media with/without random parameters or processes.
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1. Introduction

Complex media, with its important applications and underlying microscopic processes, is far from
simplicities uniform gases, liquids, or solids. The most typical features of the new physical objects and/or
processes are fractality of their structure and intrinsic dynamics or kinetics. Observation of fractality of the
basic processes began fairly long ago (see, for review, Refs. [1,2]). Typically the complexity of systems is linked
to long-term memory, long-range interactions, non-Markovian kinetics, and particularly Levy-type processes
(Levy flights) [3]. The literature on this subject is vast. Let us mention some of the most related references,
where the indication of the complexity can lead, in one or another way, to the fractional description of the
dynamic and/or kinetic processes with fractional time [4–6]; systems of many coupled elements [7,8]; colloidal
aggregates and chemical reaction medium [9]; wave processes [10–12]; porous media [13]; quantum mechanics
and quantum field theory [14–16]; plasma physics [17–19]; magnetosphere [20]; random processes and random
walks [21–25]; fractional diffusion and Brownian motion [6,26,27]; weak and strong turbulence [11,28,29];
fractional kinetics and chaos theory [30] (see, for review, Refs. [31,32]).
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It seems that the basic formal tool to be applied is the description of the processes by fractional equations,
i.e., by the ones that contain fractional derivatives or integrals [33–36]. The theory of derivatives of noninteger
order goes back to Leibnitz, Liouville, Riemann, Grunwald, and Letnikov [33,34]. Derivatives and integrals of
fractional order have found many applications in recent studies in physics because of their continually growing
numerous applications.

Usually, onset of fractional derivatives (integral) is linked to different power-type asymptotic interactions or
temporal memories. Depending on what kind of specific features characterize the physical object, the
fractional derivative (integrals) can be with respect to time or space coordinate. In the description of particles
transport, when the dynamics is chaotic, the fractional derivatives emerge in space and time simultaneously as
a natural reflection of scaling properties of the phase space dynamics [30,31]. The diffusion described by the
fractional equations is called anomalous. The occurrence of such derivatives could also be related to the
space–time decay [37,38], i.e., to pure dynamical processes without kinetics or diffusion. Particularly it was
shown in Refs. [39–43] how the long-range interaction between different oscillators can be described by
fractional differential equations in the continuous medium limit. Another way to connect the fractional
equations with specific dispersion laws of the media was considered in Refs. [10,11,44].

The goal of this paper is to provide a systematic approach to the onset of fractional equations as a result of
existence of long-range interaction in a corresponding space and long-range time memory in the system of
fields or particles depending on what kind of physical objects are considered. The notions of long-terms
memory or interaction can be exactly specified by power laws in time for a memory function and power-law
interaction between different elements of the medium. It is of importance to understand the conditions when
the fractional derivatives (integrals) occur since it allows us to involve powerful tools of fractional calculus.

In Section 2, we consider the variation of the action functional that describes a field with memory and long-
range interaction. The long-time memory and long-range interaction can be introduced through power-like
kernels of the action functional. The corresponding powers are defined by the exponent a (for space) and b (for
time), which in general can be fractional. The Euler–Lagrange equations lead to the equation with fractional
ða;bÞ-derivatives. In Section 3, the obtained results are used for derivation of ða;bÞ-generalization of the
Ginzburg–Landau and nonlinear Schrödinger equations (NSES). In Section 4, we consider chains of particles
with long-range interaction and memory function. Applying the results of Section 2, we derive the continuous
limit of the particle dynamics equations. In two Appendices, we provide some brief information on the
Riemann–Liouville, Caputo and Riesz fractional derivatives used in paper, and n-dimensional generalization
of the final fractional equations.

2. Action functional and its variation

2.1. Action functional

Let us define the action functional as

S½u� ¼

Z
R

d2x

Z
R

d2y
1

2
qtuðxÞg0ðx; yÞqt0uðyÞ þ

1

2
qruðxÞg1ðx; yÞqr0uðyÞ � V ðuðxÞ; uðyÞÞ

� �
. (1)

Here x ¼ ðt; rÞ, t is time, r is coordinate, and y ¼ ðt0; r0Þ. The integration is carried out over a region R of the
two-dimensional space R2 to which x belong. The field uðxÞ is defined in a two-dimensional region R of R2.
We assume that uðxÞ has partial derivatives

qtuðxÞ ¼
quðt; rÞ

qt
; qruðxÞ ¼

quðt; rÞ

qr
,

which are smooth functions with respect to time and coordinate.
Here are three examples of this action.
(a) If

g0ðx; yÞ ¼ �g1ðx; yÞ ¼ dðx� yÞ,

V ðuðxÞ; uðyÞÞ ¼ V ðuðxÞÞdðx� yÞ, (2)
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