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h i g h l i g h t s

• We explain multifractal sequences through statistical convergence effects on random variables.
• The first convergence effect generates monofractal sequence with long-range correlations.
• The second convergence effect generates the variation in fractal dimension of the monofractals.
• Both convergence effects together explain the genesis of multifractal sequences.
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a b s t r a c t

Multifractals can be defined as fractal systems that express a range of fractal dimensions.
The origins of multifractality in time series data have conventionally been attributed to
fat-tailed probability distributions, and to long-range correlations. Multifractal sequences
can be generated from the eigenvalue deviations of the Gaussian unitary and orthogonal
ensembles of random matrix theory. These deviations can be resolved into component
monofractal sequences governed by the Tweedie compound Poisson distribution, a statis-
ticalmodel that expresses a variance tomean power law related to long-range correlations.
Fullymultifractal descriptions of these deviations can be constructed, provided that the pa-
rameter of the compound Poisson model related to fractal dimension varies in accordance
with an asymmetric Laplace distribution. Both the Tweedie compound Poisson distribution
and the asymmetric Laplace distribution serve as foci of convergence in limit theorems on
independent and identically distributed randomvariables. The hypothesis thatmultifractal
sequences can be attributed to mathematical convergence effects that have as their focus
these two statistical models is proposed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multifractality in time series data has been conventionally attributed to either broad probability distributions governing
the time series or to dissimilar long-range correlations between small and large fluctuations [1]. Studies based on detrended
fluctuation analysis andwavelet analysis of hydrological time series have suggested thatmultifractality relates to self-similar
clustering onmultiple time scales represented by amultiplicative cascademodel [2]. In contrast, when the generalizedHurst
exponent method was applied to financial time series, multifractality was related to fat-tailed distributions [3]. Despite the
postulated roles of fat-tailed distributions and long-range correlations in multifractality, the origin(s) of these fat-tailed
distributions and long-range correlations themselves are unclear. The genesis of multifractality thus remains a subject for
continued research and conjecture.
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Wavelet analysis has also been used to study multifractality associated with the eigenvalue deviations of the Gaussian
unitary and orthogonal ensembles (GUE and GOE) [4], as well as within the distribution of prime numbers [5]. The origin of
multifractality in these cases was, in part, attributed to a general mathematical convergence effect that had as its focus the
family of statistical distributions known as the Tweedie exponential dispersionmodels (EDMs) [6]. Thesemodels are charac-
terized by a power law relationship between the variance and themean that specifiesmonofractal sequences andwhere the
power law exponent relates to fractal dimension. A complete multifractal description of such data would require a further
variation in this exponent. Here, this additional variation is related to the asymmetric Laplace distribution, a distribution
that belongs to a further class of Tweediemodels that serve as the focus of mathematical convergence for random geometric
sums. Examples of this role of the asymmetric Laplace distribution will be provided from the eigenvalue deviations of the
GUE and GOE, as well as the distribution of the prime numbers.

Wewill beginwith a brief description of themultifractal properties of the GUE andGOE. The associated eigenvalue devia-
tionswill be framed in the context of the self-similar stochastic processes used by Leland et al. to describe ethernet traffic [7].
The Tweedie EDMs, introduced next, will be shown to provide a stochastic description for self-similar processes, followed by
a description of the Tweedie convergence theorem to explain the mathematical origin of self-similar processes. The asym-
metric Laplace distribution is then introduced to describe the variation seenwithin the dimensional exponent of the Tweedie
EDMs [6], and the convergence theorem governing this distribution is described. On this basis a hypothesis is proposed to
explain the origin of multifractality in terms of mathematical convergence effects related to the central limit theorem (CLT)
of statistics.

2. Multifractality within the GUE and GOE

The GUE and GOE consist of N × N symmetric matrices with Gaussian distributed random elements. The GUE is con-
structed from complex Hermitian matrices that are invariant under unitary transformation. For a N × N matrix of the GUE,
with elements Hnm, the diagonal elements are Gaussian distributed with mean 0 and variance 1; form < n the elements are
Gaussian distributedwith independent real and imaginary components ofmean 0 and variance 1/2; the remaining elements
of the matrix are derived from the conjugate transpose Hmn = Hnm

∗.
For aN ×N matrix of the GOE, with elementsHnm, its diagonal elements are the same as for the GUE; however, form < n

the GOE matrix elements are all real, Gaussian distributed, values with mean 0 and variance 1/2; the remaining elements
where n < m are specified by Hmn = Hnm. Matrices from the GOE are thus invariant under orthogonal transformations.

The ranked eigenvalues from matrices of the GUE and GOE have a distinctive behavior. As N → ∞ the average density
ρ̄(E) of ranked eigenvalues of magnitude E obeys the Wigner, or semicircular, distribution [8],

ρ̄(E) =


2N − E2/π, |E| <

√
2N

0, |E| >
√
2N.

(1)

Integration of the semicircular distribution gives the number of eigenvalues on average less than E,

η(E) =
1
2π


E

2N − E2 + 2N sin−1


E

√
2N


+ πN


. (2)

Individual eigenvalues En may be renormalized (unfolded) using

en = η̄(En) =

 En

−∞

dE ′ρ̄(E ′), (3)

which separates the general trend of the sequence from the fluctuating component.
Multifractality can be demonstrated from the absolute value of the deviations between the actual and the expected cu-

mulative number of ranked eigenvalues E1, E2, . . . , EN of the GUE and GOE [4],

|Dn| = |n − η(En)| . (4)

Fig. 1(a) gives the values for |Dn| as obtained from a 10,000×10,000matrix of the GUE; Fig. 2(a) gives these values from a
10,000×10,000matrix of the GOE. Both plots revealed regions where larger deviations appeared to cluster together leading
to apparent cusps and troughs, themselves suggestive of multifractal singularities.

Wavelet analysis [9] was applied to further assess the multifractality of these sequences. Each sequence was separated
into component wavelets derived from differentiation of the Gaussian function. A partition function was constructed; its
scaling behavior was analyzed in terms of the sizes of the wavelets. For multifractals this partition function would be ex-
pected to scale with a power law of exponent τ(q). This exponent is called the multifractal scale exponent of moment order
q. τ(q) specifies the multifractal spectrum; a Legendre transformation provides the corresponding singularity spectrum,
D(h) = minq[qh − τ(q)]. The D(h) spectrum describes the Hausdorff (fractal) dimension where the Hölder exponent takes
the value h. Monofractals would be expected to express a linear τ(q) spectrum; multifractals would express an inflection in
τ(q). In contrast, the D(h) spectrum of a monofractal would consist of a single point; D(h) for a multifractal would resemble
an inverted curve.
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