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h i g h l i g h t s

• Wemodel the waiting time for two successive mutations.
• Our model is an alternative to the Moran model with mutations.
• We get an exact formula for the waiting time distribution.
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a b s t r a c t

The appearance of cancer in a tissue is thought to be the result of two or more successive
mutations. We propose a stochastic model that allows for an exact computation of the dis-
tribution of the waiting time for a second mutation. This models the time of appearance
of the first cancerous cell in a tissue. Our model is an alternative to the Moran model with
mutations.

© 2014 Elsevier B.V. All rights reserved.

1. The model

The idea of successivemutations to trigger the appearance of a cancerous cell goes back to at least Ref. [1]. The first math-
ematical model proposed for this phenomenon goes back to [2]. There has been a great deal of discussion on the number
of successive mutations necessary to get a cancerous cell. It seems that this number depends on the organ, see Refs. [3,4].
However, some authors have argued that two mutations models are flexible enough to model most cancers, see Refs. [5,6].
This is the point of view we adopt.

We now describe our model. We are interested in the time it takes for a given organ to have a first cancerous cell. We
assume that all cells are in one of three stages: healthy, precancerous (i.e. type 1) and cancerous (i.e. type 2). We start the
process with all cells healthy. As the cells divide precancerous cells may appear due to a type 1 mutation on a healthy cell.
A type 2 mutation on a precancerous cell makes the cell cancerous.

The number of type 1 mutations is modeled by a Poisson process with rate µ1ν. We think of µ1 as a mutation rate and ν
as a division rate. Our model does not take into account the number of organ cells. Mutations are thought to appear at cell
division. Hence, the relevant parameter is the rate at which cells divide (i.e. ν) rather than the total number of cells.

A type 2 mutation appears on a type 1 cell. The appearance of type 2 mutations can be modeled by a number of different
processes and we will give several examples. We now state our two hypotheses for the second mutation process.
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Let N1(t) be the number of type 1 mutations that have occurred up to time t . Let T1 < T2 < · · · be the arrival times of
this Poisson process. The ith type 1 mutation appears at some time Ti = ti. We let a (random) waiting time Si start at time
ti. A type 2 mutation appears at time Si. The minimum of these waiting times (i.e. the first time a type 2 mutation appears
in the tissue) is denoted by τ2.

Given that N1(t) = k and that T1 = t1, T2 = t2, . . . , Tk = tk we assume for i = 1, . . . , k that
P(Si > t|Ti = ti) = h(t, ti) for t > ti. (1.1)

Note that we are assuming that h does not depend on i. Our second hypothesis concerns the conditional independence of
the random variables Si. More precisely,

P(S1 > t, . . . , Sk > t|N1(t) = k, T1 = t1, . . . , Tk = tk) = h(t, t1) × · · · × h(t, tk). (1.2)
Let U be uniformly distributed in (0, t) and

m2(t) = E(h(t,U)).

Here is our main result.

Theorem 1. Let τ2 be the time for the first type 2 mutation to appear. Then,

P(τ2 > t) = exp[µ1νt

−1 + m2(t)


].

We have picked the Poisson rate f (µ1, ν) = µ1ν because this seems natural but the formula holds for any f as the reader
can easily check.

Since h(t, s) is in [0, 1] for all 0 ≤ s ≤ t we have
−1 ≤ −1 + m2(t) ≤ 0.

That is, the second mutation appears in the formula of Theorem 1 through a bounded function. That is in sharp contrast
with the role of the first mutation in the formula. This is consistent with [7] view of carcinogenesis. His hypothesis is that
first mutations must hit a stem cell to be relevant. However, he also believes that stem cells (unlike other cells) have low
mutation rates (a defective stem cell tends to die rather than try to repair itself). Hence, we are protected (for the most part)
from cancer because µ1ν is low, see also Ref. [8].

Wenowgive three examples forwhichwe can computem2(t) explicitly. All our examples have the property thath(t, s) =

h(t − s, 0) for t > s > 0. Hence,m2(t) = E(h(t − U, 0)).

Example 1.1. Assume that a type 1 cell mutates into a type 2 cell after an exponential time with rate µ2. That is,

h(t, ti) = P(Si > t|Ti = ti) = exp(−µ2(t − ti)) for t > ti.

In this example type 1 cells do not give birth or die. They stay put waiting for a type 2 mutation. If we think of a type 1 cell
as a mutated stem cell this is consistent with the biological picture, see Ref. [9]. We have

m2(t) = E(h(t − U, 0)) =
1
t

 t

0
exp(−µ2(t − s))ds =

1
µ2t

(1 − exp(−µ2t)).

Example 1.2. Assume that a type 1 cell dies after an exponential time with rate δ. Assume also that during its lifetime it
may mutate (independently of everything else) to a type 2 cell with rate µ2. In this example type 1 cells do not give birth.
Then, 1− h(t, 0) (i.e. the probability that a type 2 mutation occurs by time t on a type 1 cell that appeared at time 0) can be
computed by

1 − h(t, 0) =


A
δ exp(−δs)µ2 exp(−µ2u)dsdu

where

A = {(s, u) : 0 ≤ u < s, 0 ≤ u < t}.

Hence,

1 − h(t, 0) =
µ2

δ + µ2
(1 − exp(−(δ + µ2)t)).

Therefore,

m2(t) = E(h(t − U, 0)) =
δ

δ + µ2
+

1
t

µ2

(δ + µ2)2
(1 − exp(−(δ + µ2)t)).

Example 1.3. Assume that each type 1 cell gives birth to a new cell at rateλ. There are no deaths. This is thewell-knownYule
process, see Ref. [10] for instance. Starting with a single type 1 cell the probability to have exactly n ≥ 0 births by time t is

exp(−λt)(1 − exp(−λt))n.
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