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h i g h l i g h t s

• We estimate the stochastic process of DAX log-returns.
• The resulting Langevin equation is used to run extensive simulations.
• Our findings indicate that this equation is capable of generating LPPL structures.
• A link between synthetic LPPL patterns and ensuing phase transitions is established.
• We statistically confirm the genuine nature of LPPL structures in the DAX.
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a b s t r a c t

Recent research has established log-periodic power law (LPPL) patterns prior to the
detonation of the German stock index (DAX) bubble in 1998. The purpose of this article
is to explore whether a Langevin equation extracted from real world data can generate
synthetic time series with comparable LPPL structures. To this end, we first estimate the
stochastic process underlying the DAX log-returns during the period from mid-1997 until
end-2003. The employed data set contains about 3.93 · 106 intraday DAX quotes at a
sampling rate of 15 s. Our results indicate that the DAX log-returns can be described
as a Markov process. As a consequence, a Langevin equation is derived. Based on this
model equation, we run extensive simulations in order to generate 100 synthetic DAX
trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time
series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts
in seven synthetic 600-week windows. However, the LPPL components in most synthetic
trajectories differ fundamentally from those LPPL structures that have previously been
detected in real financial time series. Summarized, this paper demonstrates that LPPL
structures are not necessarily the signature of imitative behavior among investors but can
also stem fromnoise, even though the likelihood of this is extremely low. Thus, our findings
confirm with high statistical confidence that the LPPL structures in the DAX development
are rooted deeper than only in the random fluctuations of the German stock market.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fluctuations and correlations play an important role in both thermodynamic phase transitions and turbulences on
financial markets [1]. The nonlinear properties of complex financial systems have attracted the research interests of many
physicists in recent years. As a consequence, econophysics developed into an interdisciplinary field of research. Since then, an
extensive literature employing physical methods on financial issues has evolved. Two lines of research within econophysics
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are of particular importance for this paper. The first research direction presents an approach to model complex financial
systems in the form of a Langevin equation. The second strand of research explores the hypothesis that log-periodic power
law (LPPL) structures in financial time series are predictors of speculative bubble bursts. Here, these two fields of research
are merged in order to investigate whether the LPPL patterns guiding the inflation of the German stock index (DAX) until
1998 [2] are genuine rather than spurious.

As a consequence of self organization, the behavior of complex systems can often be traced back to simple model
equations [3]. A promising approach to describe such systems is via Langevin equations whichmay involve nonlinearities in
both the deterministic and the stochastic part [4]. Siegert et al. proposed a general data-driven approach for extracting such
model equations directly from experimental data [5]. This approach has already been quantitatively validated by applying it
to awide variety of realworld data sets. Examples include tremor data of patients suffering fromParkinson’s disease [6], data
of a chaotic electric circuit [6], and the dynamics of traffic flow [7]. Furthermore, this approach has proven to be appropriate
for modeling the fluctuations on stockmarkets [8,9] and of daily oil prices [10], as well as for analyzing the analogy between
turbulence and US Dollar–German Mark exchange rates [11–13].

Log-periodicity – a concept originating from statistical physics – has been demonstrated to be valuable for forecasting
collapses of speculative bubbles in financial markets. In a nutshell, the log-periodic hypothesis contends that speculative
bubbles are characterized by a faster-than-exponential power law growth decorated by log-periodic oscillations. Thus,
the LPPL provides an opportunity to quantify the speculative aspects of financial markets. The detection of log-periodic
precursors in noisy financial data before crashes goes back to the pioneering works of Feigenbaum and Freund as well as of
Sornette et al. who – inspired by the apparent analogy between financial crashes and phase transitions in complex physical
systems – detected ex-post LPPL structures guiding the S&P500 index prior to the crash in October 1987 independently
from each other [14,15]. Since then, five strands of literature have developed. First, a vast body of literature accumulated
establishing LPPL structures in a wide variety of financial markets before crashes which extend over periods from a
few months [16] to several years [17]. For example, log-periodic structures were discovered in numerous stock market
bubbles [1,18–20], in the 2006–2008 oil bubble [21], in the US FED Prime Rate [22], and in real estate bubbles [23,24].
Another testing ground for the LPPL have been time series related to credit risk [25–29]. Chang and Feigenbaum
summarize all these case studies by stating that ‘‘log-periodic precursors have been identified before most and perhaps
all financial crashes of the Twentieth Century’’ [30]. Second, some authors mathematically formalized the behavior of
market participants in order to theoretically found the observed log-periodic patterns prior to crashes [31,32]. For example,
Johansen et al. proposed an Ising Spin model to explain how the imitation between investors is leading to observable
signatures in the form of LPPLs [32,33]. Third, there is rich literature demonstrating that the herding behavior of investors
not only results in speculative bubbles with accelerating market overvaluations, but also in anti-bubbles with decelerating
market devaluations [34–36]. A fourth stream of literature goes even one step further by claiming that financial crashes
and rebounds can be forecasted by employing the LPPL [37]. The central idea of this research direction is the integration of
LPPL parameters into pattern recognition approaches in order to estimate end times of bubbles and anti-bubbles [36–39].
However, the hypothesis that the log-periodic concept possesses predictive power has met skepticism and even triggered
a heated discussion between three discoverers [17,40,41].

Due to these evidences, the question arises whether the detected log-periodic signals are genuine or spurious,
i.e., whether LPPL structures are indeed the result of imitative behavior among investors or whether these structures
can be ascribed to random fluctuations. Chang and Feigenbaum sum up: ‘‘It remains to be established that [log-periodic]
fluctuations actually reflect the structure of financial markets and do not arise by chance’’ [30]. Therefore, the fifth branch of
research investigates whether stochastic processes are capable of generating log-periodic patterns and, if so, whether there
is a connection between LPPL structures and impending crashes in synthetic data. To the best of our knowledge, only two
papers on this topic have been published so far [14,32]. Feigenbaumand Freundmodeled the stockmarket trend as a random
walk governed by a probability distribution of daily index changes which is composed of three Gaussian distributions [14].
They have detected 17 periods of LPPL structures in a synthetic time series of 10,000 days. This number is fairly large
compared to three periods of LPPL patterns in real S&P500 data over 3800 days. However, they have discovered that the
presence of LPPL structures is only predictive of crashes in real data. A connection between LPPL structures and crashes in the
synthetic data could not be established. Johansen et al. generated 1000 synthetic data sets of a length of 400weeks bymeans
of a GARCH(1,1) process in order to explore whether this stochastic process can explain the presence of LPPL patterns [32].
They only found LPPL structures in two 400-week windows which corresponds to a confidence level of 99.8% for rejecting
the hypothesis that a GARCH(1,1) process can generate LPPL structures. They also could not establish a causal link between
log-periodic patterns and crashes. Thus, they conclude ‘‘that real markets exhibit behaviors that are dramatically different
from the one predicted by a GARCH(1,1) process’’ [41].

Feigenbaum is right to state that ‘‘all of these simulation results are weakened by the fact that each experiment rules
out only one possible data-generating process’’ [17]. However, Sornette and Johansen reply that ‘‘we shall never be able to
‘prove’ in an absolute sense the existence of a log-periodicity genuinely associated with specific market mechanisms. The
next best thing we can do is to take one by one the best benchmarks of the industry and test them to see if they can generate
the same structures as we document’’ [41]. Following these remarks, we revisit the LPPL structures in the evolution of the
DAX from January 1995 until March 2000 [2,16]. We investigate whether the underlying stochastic process of the DAX log-
returnsmodeled by a Langevin equation can generate LPPL structures and, if so, whether there is a link between log-periodic
oscillations and succeeding drawdowns in the synthetic data. In doing so, we statistically examine whether log-periodic
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