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h i g h l i g h t s

• We use the two-dimensional, time-dependent, Wigner MC method.
• We simulate the evolution of a Gaussian wave packet moving in a realistic channel potential.
• We include the kernel of a scattering center in the channel.
• We compare the Wigner results with the Boltzmann results.
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a b s t r a c t

We present a numerical study of the evolution of a wave packet in a nanoscale MOSFET
featuring an ‘atomistic’ channel doping. Our two-dimensional Monte Carlo Wigner
simulation results are compared against classical Boltzmann simulation results. We show
that the quantum effects due to the presence of a scattering center aremanifestly non-local
affecting the wave propagation much farther than the geometric limit of the center. In
particular the part of the channel close to the oxide interface remains blocked for transport,
in contrast to the behavior predicted by classical Boltzmann propagation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With shrinking transistors dimensions down to nanometric size, the device electrical behavior starts to be dominated by
both the granularity of matter [1–10] and quantummechanical effects [11,12]. In order to preserve accuracy and reliability
at the nanoscale regime, device simulation approaches have, on one hand, to depart from treating the doping as a continuum,
within the Poisson equation only, and, on the other hand, to improve the traditional semi-classical modeling of transport
to properly take into account the particle–wave duality. The particle-based Wigner Monte Carlo (MC) approach has been
recently shown to efficiently deal with the simulation of full quantum transport [13]. In particular a Wigner MC method,
based on particle’s sign, for stationary cases [14] has been recently generalized for time-dependent simulations [15]. This
method is general enough to deal with multi-dimensional domains. In this work we apply it to simulate two-dimensional
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electron evolution in the channel of a nanoscale MOSFET in the presence of a single discrete dopant. The evolution problem
is posed by an initial condition, there are no injecting boundaries as in the stationary problems posed by boundary
conditions [16].

Our simulation results are, first of all, validated against two one-dimensional (1D) benchmarks based on the ballistic
Boltzmann equation for the case of a constant applied electric field and the solution of the Schrödinger equation for the case
of an idealistic potential barrier. Then, two-dimensional (2D) full quantum results are compared with results of the classical
BoltzmannMC approach for a realistic device potential. Due to the non-local quantum effects, the discrete scattering center
affects the wave propagation even when not directly interacting with it, blocking the charge propagation in the region
close to the channel interface. These results are manifestly in contrast with the behavior predicted by classical Boltzmann
propagation and demonstrate the importance of full quantum approaches for studying the electron dynamics in nanoscale
devices.

2. Numerical methodology

In order to obtain a realistic potential profile of a nanoscale device, we have performed three-dimensional (3D) TCAD
simulations of a well-scaled 25 nm MOSFET device using the GSS ‘atomistic’ simulator GARAND [17]. A vertical slice of
the 3D device is then extracted and used to perform a 2D Wigner simulation of the charge transport in the presence of a
discrete dopant. For the sake of simplicity, we account for the long range Coulombic nature of the impurity, calculated by a
self-consistent Drift–Diffusion simulation, and focus on the internal kernel modeled by a rectangular potential barrier.

Concerning the quantum transport, the GNU package Archimedes [18] has been enhanced to implement the Wigner MC
method, as formulated below for an initial condition. Themethod can actually be included in everyMCplatform, since it does
not depend on the particular instance of the implementation. The model, a reformulation of the density matrix formalism,
reads
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where d = 1, 2, 3 is the dimensionality of the problem; V = V (x, t) is a potential defined over the spatial domain and can
be time dependent.

The Monte Carlo technique exploits the semi-discrete nature of the phase-space in accordance to the principles of
quantum mechanics [15]. The main purpose of this method is to evaluate an expectation value ⟨A⟩(t), expressed as an
iterative series, of a macroscopic physical quantity A = A(x, k), defined over the Wigner phase-space
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The functions fi = fi(x,m) and g = g(x(t),m, t) are, respectively, the initial quasi-distribution function and the solution
of the adjoint equation [14], the kernel of which reads

Γ (x,m,m′) = V+

w (x,m − m′) − V+

w (x, −(m − m′)) + γ (x)δm,m′ . (5)

Finally, the quantity γ (x) is defined as

γ (x) =

∞
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V+

w (x,m), (6)

where V+
w takes the values of Vw if Vw > 0 and 0 otherwise.

Then the estimator of the expectation value (which canbe considered also as a functional of the solution) can be expressed
as weights of values of Vw at points taken in accordance with the transition probabilities. Details of the algorithm are given
in Ref. [19] as well as in Ref. [20]. We also do not consider the problem of convergency. The analysis of convergency is
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