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Abstract

The interaction of moving fluids with particles is still only understood phenomenologically when the Reynolds number is
not vanishing. I will present three different numerical studies all using the solver “fluent” which elucidate this issue from
different points of view. On one hand, I will consider the case of fixed particles, i.e., a porous medium and present the
distribution of channel openings, fluid velocities and fluxes. These distributions show a scaling law in the density of
particles and for the fluxes follow an unexpected stretched exponential behavior. The next issue will be filtering, i.e., the
release of massive tracer particles within this fluid. Interestingly, a critical Stokes number exists below which no particles
are captured and which is characterized by a critical exponent of % Finally, I will also show data on saltation, i.e., the
motion of particles on a surface which when dragged by the fluid performs jumps. This is the classical eolian transport
mechanism responsible for dune formation. The empirical relations between flux and wind velocity are reproduced and a
scaling law of the deformed wind profile is presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many applications in chemical engineering, fluid mechanics, geology and biology involve systems of
particles immersed in a flowing liquid or gas [1-3]. Also fluid flow through a porous medium is of importance
in many practical situations ranging from oil recovery to chemical reactors and has been studied
experimentally and theoretically for a long time [4-6]. Due to disorder, porous media display many
interesting properties that are, however, difficult to handle even numerically. One important feature is the
presence of heterogeneities in the flux intensities due to varying channel widths. They are crucial to understand
stagnation, filtering, dispersion and tracer diffusion.

The fluid mechanics in the porous space is based on the assumption that a Newtonian and incompressible
fluid flows under steady-state conditions. The Navier—Stokes and continuity equations for this case reduce to
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where % and p are the local velocity and pressure fields, respectively, and p is the density of the fluid. No-slip
boundary conditions are applied along the entire solid—fluid interface, whereas a uniform velocity profile,
ux(0,y) = V and u,(0,y) = 0, is imposed at the in-let of the channel. For simplicity, we restrict our study to the
case where the Reynolds number, defined here as Re=pVLy/u, is sufficiently low (Re <1) to ensure a laminar
viscous regime for fluid flow. We use FLUENT [7], a computational fluid dynamic solver, to obtain the
numerical solution of Egs. (1) and (2) on a triangulated grid of up to hundred thousand points adapted to the
geometry of the porous medium.

The traditional approach for the investigation of single-phase fluid flow at low Reynolds number in
disordered porous media is to characterize the system in terms of Darcy’s law [4,6], which assumes that a
macroscopic index, the permeability K, relates the average fluid velocity V' through the pores with the pressure
drop AP measured across the system,

KAP
V= L (€)
where L is the length of the sample in the flow direction and u the viscosity of the fluid. In previous studies
[9-15], computational simulations based on detailed models of pore geometry and fluid flow have been used to
predict permeability coefficients.

In this paper, we present numerical calculations for a fluid flowing through a two-dimensional channel of
width L, and length L, filled with randomly positioned circular obstacles [16]. For instance, this type of model
has been frequently used to study flow through fibrous filters [30]. Here, the fluid flows in the x-direction at
low but non-zero Reynolds number, and in the y-direction we impose periodic boundary conditions. We
consider a particular type of random sequential adsorption (RSA) model [18] in two dimensions to describe
the geometry of the porous medium. As shown in Fig. 1, disks of diameter D are placed randomly by first
choosing from a homogeneous distribution between D/2 and L,—D/2(L,—D/2) the random x—(y-)
coordinates of their center. If the disk allocated at this position is separated by a distance smaller than D/10 or
overlaps with an already existing disk, this attempt of placing a disk is rejected and a new attempt is made.
Each successful placing constitutes a decrease in the porosity (void fraction) & by nD/4L,L,. One can associate
this filling procedure to a temporal evolution and identify a successful placing of a disk as one time step. By
stopping this procedure when a certain value of ¢ is achieved, we can produce in this way systems of well-
controlled porosity. We study in particular configurations with ¢ = 0.6, 0.7, 0.8 and 0.9.

Fig. 1. Contour plot of the velocity magnitude for a typical realization of a pore space with porosity ¢ = 0.7 subjected to a low Reynolds
number and periodic boundary conditions applied in the y-direction. The fluid is pushed from left to right. The colors ranging from blue
(dark) to red (light) correspond to low and high velocity magnitudes, respectively. The close-up shows a typical pore opening of length /
across which the fluid flows with a line average velocity v. The local flux at the pore opening is given by ¢ = v/cos 6, where 6 is the angle
between v and the vector normal to the line connecting the two disks.



Download English Version:

https://daneshyari.com/en/article/975823

Download Persian Version:

https://daneshyari.com/article/975823

Daneshyari.com


https://daneshyari.com/en/article/975823
https://daneshyari.com/article/975823
https://daneshyari.com

