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h i g h l i g h t s

• Kuramoto oscillators with uniform frequency distribution show step like relaxation.
• The metastable state is dependent on the realization of the frequency distribution.
• The metastability in the dynamics of the Kuramoto model is a finite size effect.
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a b s t r a c t

The Kuramoto model describes a system of globally coupled phase-only oscillators with
distributed natural frequencies. The model in the steady state exhibits a phase transition
as a function of the coupling strength, between a low-coupling incoherent phase in which
the oscillators oscillate independently and a high-coupling synchronized phase. Here, we
consider a uniform distribution for the natural frequencies, for which the phase transition
is known to be of first order. We study how the system close to the phase transition in
the supercritical regime relaxes in time to the steady state while starting from an initial
incoherent state. In this case, numerical simulations of finite systems have demonstrated
that the relaxation occurs as a step-like jump in the order parameter from the initial to the
final steady state value, hinting at the existence ofmetastable states.We provide numerical
evidence to suggest that the observed metastability is a finite-size effect, becoming an
increasingly rare event with increasing system size.

© 2013 Elsevier B.V. All rights reserved.

Coupled oscillators that have their natural frequencies distributed according to a given distribution, for example, a
Gaussian, a Lorentzian, or a uniform distribution, often exhibit collective synchronization in which a finite fraction of the
oscillators oscillates with a common frequency. Examples include groups of fireflies flashing in unison [1,2], networks of
pacemaker cells in the heart [3,4], superconducting Josephson junctions [5,6], and many others. Understanding the nature
and emergence of synchronization from the underlying dynamics of such systems is an issue of great interest. A paradigmatic
model in this area is the so-called Kuramoto model involving globally-coupled oscillators [7]. Although studied extensively
in the past, the model continues to raise new questions, and has been a subject of active research; for reviews, see Ref. [8,9].

One issue that has been explored in recent years, and is also the focus of this paper, concerns the Kuramoto model
with uniformly distributed natural frequencies. In this case, it is known that in the limit of infinite system size, where
size refers to the number of oscillators, the system in the steady state undergoes a first-order phase transition across a
critical coupling threshold Kc , from a low-coupling incoherent phase to a high-coupling synchronized phase. For values
of the coupling constant slightly higher than Kc , non-trivial relaxation dynamics has been reported, based on numerical
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simulations of large systems [10,11]. Namely, it has been shown that initial incoherent states while evolving in time get
stuck in metastable states before attaining synchronized steady states. This phenomenon has been demonstrated by the
temporal behavior of the order parameter characterizing the phase transition, which shows a relaxation from the initial
value of the order parameter to its final steady state value in step-like jumps. An aspect of the Kuramoto model which is of
interest and has been explored in some detail concerns finite-size effects [12,13], whichmay have important consequences,
for example, for K < Kc , in stabilizing the incoherent state which in the limit of infinite size is known to be linearly neutrally
stable [14]. In this context, it is important to investigate whether the metastable states mentioned above may be attributed
to finite-size effects. In this paper, we systematically study this phenomenon of step-like relaxation. We provide numerical
evidence to suggest that the observed metastability is indeed a finite-size effect, becoming an increasingly rare event with
increasing system size.

The Kuramotomodel consists ofN phase-only oscillators labeled by the index i = 1, 2, . . . ,N . Each oscillator has its own
natural frequencyωi distributed according to a given probability density g(ω), and is coupled to all the other oscillators. The
phase of the oscillators evolves in time according to Ref. [7]

dθi
dt

= ωi +
K
N

N
j=1

sin(θj − θi), (1)

where θi, the phase of the ith oscillator, is a periodic variable of period 2π , and K ≥ 0 is the coupling constant.
The Kuramotomodel has beenmostly studied for a unimodal g(ω), i.e., onewhich is symmetric about themean frequency

ω = Ω , and which decreases monotonically and continuously to zero with increasing |ω −Ω| [8,9]. Then, it is known that
in the limit N → ∞, the system of oscillators in the steady state undergoes a continuous transition at the critical threshold
Kc = 2/πg(0). For K < Kc , each oscillator tends to oscillate independently with its own natural frequency. On the other
hand, for K > Kc , the coupling synchronizes the phases of the oscillators, and in the limit K → ∞, they all oscillate with
the mean frequencyΩ . The degree of synchronization in the system at time t is measured by the complex order parameter

r(t) = r(t)eiψ(t) =
1
N

N
j=1

eiθj(t), (2)

with magnitude r(t) and phase ψ(t), in terms of which the time evolution (1) may be written as

dθi
dt

= ωi + Kr(t) sin(ψ(t)− θi). (3)

Here r(t)with 0 ≤ r(t) ≤ 1measures the phase coherence of the oscillators, whileψ(t) gives the average phase. When K is
smaller than Kc , the quantity r(t)while starting from any initial value relaxes in the long-time limit to zero, corresponding
to an incoherent phase in the steady state. For K > Kc , on the other hand, r(t) grows in time to asymptotically saturate to
a non-zero steady state value rst = rst(K) ≤ 1 that increases continuously with K . The relaxation of r(t) to steady state is
exponentially fast for K > Kc . For K < Kc , however, the nature of relaxation depends on g(ω). When g(ω) has a compact
support, r(t) while starting from any initial value decays to zero more slowly than any exponential as t → ∞ [15]. When
g(ω) is supported on the whole real line, r(t) as a function of time is known only in particular cases. For example, for a
Lorentzian g(ω), and a specific initial condition, r(t) decays exponentially to zero [15]. For other choices of g(ω) in this class
and for other initial conditions, the dependence of r(t) on time is not known analytically, and it has been speculated that
r(t) is a sum of decaying exponentials [15].

In the limit N → ∞, the state of the oscillator system at time t is described by the probability distribution f (θ, t, ω)
that gives for each natural frequency ω the fraction of oscillators with phase θ at time t . The time evolution of f (θ, t, ω)
satisfies the continuity equation for the conservation of the number of oscillators with natural frequency ω, and is given by
a nonlinear partial integro-differential equation [8]. Recent analytical studies for a unimodal g(ω) (specifically, a Lorentzian)
and for two different bimodal g(ω)’s (given by a suitably defined sum and difference of two Lorentzians) demonstrated by
considering a restricted class of f (θ, t, ω), and by employing an ansatz due to Ott and Antonsen that the time evolution in
terms of the integro-differential equationmay be exactly reduced to that of a small number of ordinary differential equations
(ODEs) [16–18]. Interestingly, the ODEs for the reduced system contain the whole spectrum of dynamical behavior of the
full system. The Ott–Antonsen ansatz has also been applied to various globally and nonlinearly coupled oscillators with
uniformly distributed frequencies [19].

A uniform g(ω) with a compact support does not qualify as a unimodal distribution. In this case, it is known that in
the limit N → ∞, the Kuramoto model in the steady state exhibits a first-order phase transition between an incoherent
and a synchronized phase at the critical coupling Kc = 2/πg(0) [20]. For large N , numerical studies of the relaxation of an
initial state with uniformly distributed phases have demonstrated that for values of K around Kc in the supercritical regime,
the process occurs as a step-like jump in r(t) from its initial to the steady state value. One may interpret this behavior as
suggesting the existence of metastable states in the system [10,11]. Our motivation is to investigate the implication of the
existence of the step-like relaxation, and whether such relaxation can be seen only in finite-sized systems.

We performed extensive numerical simulations involving integration of Eq. (3) by a 4th-order Runge–Kutta algorithm.
We considered a system of N = 1000 oscillators, with the ωi’s independently and uniformly distributed in [−2, 2], so
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