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HIGHLIGHTS

e A geometric approach to centrality using the Moore-Penrose pseudo-inverse of the Laplacian.

Topological centrality of a node is determined in terms of the position vector and the robustness of the overall network in terms of the
Kirchhoff index.

Interpretations provided in terms of detour overheads, recurrence probabilities and connectedness in bi-partitions.

Empirical analysis shows how these indices reflect structural roles of nodes in the network and their sensitivity to perturbations.
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vatlable onine prt topological centrality index, defined as C* (i) = l/l;. In turn, the sum of reciprocals of in-

dividual node centralities, ), 1/C*(i) = ) [T, or the trace of L*, yields the well-known

ﬁgggiﬁnmse pseudo-inverse of the Kirchhoff index (X), an overall structural déslclriptor for the network. To put into context

Laplacian this geometric definition of centrality, we provide alternative interpretations of the pro-
Topological centrality posed indices that connect them to meaningful topological characteristics — first, as forced
Kirchhoff index detour overheads and frequency of recurrences in random walks that has an interesting
Expected hitting and commute times analogy to voltage distributions in the equivalent electrical network; and then as the av-
Equivalent electrical network erage connectedness of i in all the bi-partitions of the graph. These interpretations respec-

Connected bi-partitions of a graph tively help establish the topological centrality (C*(i)) of node i as a measure of its overall

position as well as its overall connectedness in the network; thus reflecting the robustness
of i to random multiple edge failures. Through empirical evaluations using synthetic and
real world networks, we demonstrate how the topological centrality is better able to dis-
tinguish nodes in terms of their structural roles in the network and, along with Kirchhoff
index, is appropriately sensitive to perturbations/re-wirings in the network.
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1. Introduction

Unlike traditional studies on network robustness, that typically treat networks as combinatoric objects and rely
exclusively on classical graph-theoretic concepts (such as degree distributions, geodesics and minimum cuts), we explore
a geometric approach as an alternative. To do so, we embed the network into an n-dimensional Euclidean space (n being
the number of nodes in the network) represented by the Moore-Penrose pseudo-inverse of its graph Laplacian, denoted
henceforth by L*. The diagonal entries of L™, denoted as l$ for the node i, represent the squared distance of node i to the
origin in this n-dimensional space and provide a measure of the node’s topological centrality, given as C* (i) = l/l;-“. Closer
the node i is to the origin in this space, or equivalently lower the I, more topologically central i is. Similarly, the trace of
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L*, Tr(LY) = Y, 1/C*(i), determines the overall volume of the embedding and yields the well-known Kirchhoff index (X),
a structural descriptor for the network as a whole. Once again, lower the value of X for a network (from amongst all possible
networks with the same number of nodes and edges), more compact the embedding, and more structurally robust the overall
network is. In short, topological centrality defines a ranking of the nodes of a given network, whereas the Kirchhoff index
provides a geometric measure to rank different networks of comparable sizes.

In order to illustrate how the two geometric quantities defined above actually reflect the structural properties of the
underlying network, and in particular to structural robustness against multiple failures, we provide three alternative
interpretations for them in terms of: (a) detour overheads in random walks, (b) voltage distributions and the phenomenon
of recurrence when the network is treated as an electrical circuit, and (c) the average connectedness of nodes when the
network breaks into two, thereby making global communication untenable. We describe each of these in detail below.

First, we show how topological centrality of a node reveals its overall position in the network. By equating topological
centrality of a node i, i.e. C*(i)) = 1 /l§, to the (reciprocal of) average detour overhead incurred when a random walk
between any source-destination pair is forced to go through i, we get a measure of the node’s position. Intuitively, the
average overhead incurred in such forced detours (measured in terms of the number of steps in the random walk) is lower
if node i is centrally positioned in the network (higher €*(i) and lower l;) and higher if i is peripheral. Secondly, we show
how C*(i) captures voltage distribution when the network is transformed into an equivalent electrical network (EEN). This,
in turn, is related to the probability with which a random detour through i returns to the source node; referred to as the
phenomenon of recurrence in random walk literature. To be precise, higher ¢*(i) implies that a random detour through
node i forces the random walk between any source-destination pair to return to the source node with lower probability,
thereby incurring lower detour overhead. Both of these interpretations, namely average detour overhead and probability of
recurrence, therefore, demonstrate how C*(i) quantifies the overall position of node i in the network. Finally, we establish
how C*(i) captures the overall connectedness of node i. To do so, we equate it to the number of nodes that i can communicate
with when a subset of edges in the network fail in such a way that the network is partitioned into two connected sub-
networks. As connected bi-partitions represent a regressed state of the network when not all pairs of nodes can maintain
communication, a higher value of ¢*(i), implies that i is present in the larger of the two sub-networks, on an average, in
such bi-partitions. Thus, €*(i) reflects the immunity/vulnerability of node i towards multiple edge failures in the network,
a distinct topological characteristic.

Through numerical simulations using synthetic and realistic network topologies, we demonstrate that our new indices
better characterize robustness of nodes in network, both in terms of position as well as connectedness, as compared to
other existing metrics (e.g. node centrality measured based on degree, shortest paths, etc.). A rank-order of nodes by their
topological centralities (C*(i)) helps distinguish them in terms of their structural roles (such as core, gateway, etc.). Also,
topological centrality and Kirchhoff index, are both appropriately sensitive to local perturbations in the network, a desirable
property not displayed by some of the other popular centrality indices in literature (as shown later in this paper).

The rest of the paper is organized as follows: we begin by providing a brief overview of several structural indices,
characterizing node centrality as well as overall descriptors for networks, found in literature in Section 2. Section 3
introduces a geometric embedding of the network using the eigenspace of L™, topological centrality and Kirchhoff index as
measures of robustness. Section 4 demonstrates how topological centrality of a node reflects the average detour overhead in
random walks through a particular node in question followed by its equivalence to the probability of recurrence. In Section 5
we show how topological centrality captures the average connectedness of nodes in the bi-partitions of a network. Section 6
presents comparative empirical analysis with simulated as well as real world networks while in Section 7 we analyze
the computational complexity of the proposed metrics with respect to others popular in literature. Finally, the paper is
concluded with a discussion of future work in Section 8.

2. Related work

Robustness of nodes to failures in complex networks is dependent on their overall position and connectedness in the
network. Several centralities, that characterize position and/or connectedness of nodes in complex networks in different
ways, have therefore been proposed in literature. Perhaps the simplest of all is degree—the number of edges incident on
a node. Degree is essentially a local measure i.e. a first order/one-hop connectedness index. A second-order variant called
joint-degree, given by the product of degrees of a pair of nodes that are connected by an edge in the network, is also in vogue.
However, except in scale free networks that display the so called rich club connectivity [ 1-3], neither degree nor joint-degree
determine the overall position or the connectedness of nodes.

A class of structural indices called betweennesses, namely shortest path/geodesic (GB) [4,5], flow (FB) [6] and random-
walk (RB) [7] betweenness respectively quantify the positions of nodes, with respect to source-destination pairs in the
network. The set of betweennesses, therefore, reflect the role played by a node in the communication between other node-
pairs in the network and are not the measures of a node’s own connectedness.

Another popular centrality measure is geodesic closeness (GC) [4,5]. It is defined as the (reciprocal of) average shortest-
path distance of a node from all other nodes in the network. Clearly, geodesic closeness is a pth-order measure of
connectedness where p = {1, 2, ..., 6}, § being the geodesic diameter of the graph, and is better suited for characterizing
global connectedness properties than the aforementioned indices. However, communication in networks is not always
confined to shortest paths alone and GC being geodesic based, ignores other alternative paths between nodes, however
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