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a b s t r a c t

Wepresent a generic thresholdmodel for the co-evolution of the structure of a network and
the binary state of its nodes. We focus on regular directed networks and derive equations
for the evolution of the system toward its absorbing state. It is shown that the system
displays a transition from a connected phase to a fragmented phase, and that this transition
is driven by the initial configuration of the system, as different initial conditionsmay lead to
drastically different final configurations. Computer simulations are performed and confirm
the theoretical predictions.
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1. Introduction

The relation between a cause and its effect is usually abrupt in complex systems, in the sense that a small change in the
neighborhood of a subsystem may (or may not) trigger its reaction. This mechanism is at the heart of many models of self-
organized criticality [1] where a cascade starts when the system has been frustrated beyond some threshold, e.g. the angle
of a sand pile, but also inmodels for the diffusion of ideas in social networks [2–5] where the adoption of a new idea requires
simultaneous exposure to multiple active acquaintances, and in integrate-and-fire neuron dynamics [6] where the voltage
on a single neuron increases until a specified threshold is reached and it suddenly fires by emitting an action potential,
thereby quickly returning to its reference. These types of model consist in cascading propagations on a fixed topology, i.e., a
network of some sort, until a frozen configuration is reached, but they do not incorporate the well-known feedback existing
between network topology and dynamics [7–16], namely that the topology itself may reorganize when it is not compatible
with the state of the nodes. This reorganisation may originate from homophily and social balance in social networks or
synaptic plasticity in neuron dynamics.

The purpose of this paper is to clarify the important role of initial conditions for such models where the nodes’ states co-
evolve with the network architecture. Let us describe this effect for the generic co-evolutionary threshold dynamics defined
as follows (CTD). We present its ingredients in terms of the diffusion of opinions in social networks [17,18] while keeping
in mind that the model is applicable to more general systems. The system is made of a social network of interaction, whose
N nodes are endowed with a binary opinion s, + or −. The dynamics is driven by the threshold φ, such that 0 ≤ φ ≤ 1 and,
in most cases of interest, φ > 1/2. At each step, a randomly selected node i evaluates the opinion of its ki neighbours (see
Fig. 1). Let φi be the fraction of neighbours disagreeing with i. If φi ≤ φ, node i breaks the links toward those disagreeing
neighbours and rewires them to randomly selected nodes. If φi > φ, i adopts the state of the majority. By construction, the
dynamics perdures until consensus, i.e., all agents having the same opinion, has been attained in the whole system or in
disconnected components. This absorbing state obviously depends on the threshold φ but also, as we will discuss in detail
below, on its initial condition, as some classes of initial configurations will lead to fragmentation while others will lead to
global (connected) consensus.
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Fig. 1. Update process of CTD for two different configurations of neighbours of a randomly selected node (surrounded).When one out of four neighbours is
in a different state, the central node breaks its links and creates a new link to a randomly chosen node. When three out of four neighbours are in a different
state, the threshold φ is exceeded and the central node thus adopts the majority state.

A complete analysis of CTD requires extensive computer simulations, which is not the objective of this paper. We will
instead focus on a simplified version of the model that can be studied analytically and pinpoint the key mechanisms
responsible for its behaviour [19]. Thismodel is introduced in Section 2 and studied analytically and numerically in Section 3,
where we also describe in detail the transition between consensus and partial consensus. Finally, in Section 4, we conclude
and discuss the implications of our work.

2. Simple model for co-evolution

Let us introduce a simplified version of CTD. In this version, the network is directed and all the nodes have two incoming
links, i.e. each node is influenced by exactly two nodes, while their out-degree is initially Poisson distributed. Moreover, we
will take φ = 1/2, such that CTD now simplifies as follows. At each time step, a node i is selected at random. Let j and k be
the two in-neighbours of i, namely the nodes at the extremities of its incoming links. If si ≠ sj and si ≠ sk, node i switches its
opinion, i.e., si → −si. If the opinion of only one of its in-neighbours, say j, differs from si, i cuts its link from j and reconnects
to a randomly chosen node, thereby maintaining its in-degree constant. If si = sj = sk, nothing happens. It is interesting
to stress that this simplified version of CTD corresponds to the unanimity rule [20] when no rewiring is implemented. This
model is well-known to exhibit a non-trivial relation between the initial and final densities of + nodes, denoted by n+;0
and n+;∞ respectively. We will show that the addition of the rewiring mechanism leads to a transition from a connected
phase with consensus where all the nodes asymptotically belong to the same component, to a fragmented phase where two
disconnected components of different opinions survive. The critical parameter of this transition is shown to be the initial
density n+;0 of + nodes, i.e.,

n+;∞


= 0 (− consensus) for n+;0 < nc,
∈]0, 1[ (fragmentation) for nc < n+;0 < 1 − nc,
= 1 (+ consensus) for n+;0 > 1 − nc,

(1)

where nc is the critical density.

3. Results

In order to analyze the system dynamics, let us follow the approach proposed in Ref. [20] and focus on the expected
numberNs0;s1s2 of configurationswhere a node in state s0 receives its incoming links from a node in state s1 and another node
in state s2. Let us denote by {s0; s1s2} such a triplet of nodes. By construction, si may be +1 or −1 and

∑
s0s1s2

Ns0;s1s2 = N .
Moreover, the order of the links is not important and therefore Ns0;s1s2 = Ns0;s2s1 . By neglecting higher order correlations
than those included in Ns0;s1s2 , it is possible to derive the set of equations

N+;++(t + 1) = N+;++ +
1
N

(N−;++ + n+N+;+− + π−→+N+;+− − 2π+→−N+;++)

N+;−−(t + 1) = N+;−− +
1
N

(−N+;−− + π+→−N+;+− − 2π−→+N+;−−)
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