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a b s t r a c t

We study how initial network structure affects the evolution of cooperation in a spatial
prisoner’s dilemma game. The network structure is characterized by various statistical
properties. Among those properties, we focus on the variance of the degree distribution,
and inquire how it affects the evolution of cooperation by three methods of imitation. For
every method, it was found that a scale-free network does not always promote the evo-
lution of cooperation, and that there exists an appropriate value of the variance, at which
cooperation is optimal.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

How to explain the fact that altruistic behavior exists in the real world has drawn considerable attention in many fields
including sociology, economics, and biology. Simulation of the prisoner’s dilemma (PD) is a powerfulmethod for the analysis
of cooperative action [1]. There are severalmodels of PD, in particular, the spatial prisoner’s dilemma (SPD)which is capable
of modeling interaction among individuals, has been widely explored. In the PD game, two players simultaneously decide
whether to cooperate or defect. Both individuals receive a payoff R undermutual cooperation and P undermutual defection.
A cooperator receives Swhenplayingwith a defector,who in turn receives T , with T > R > P > S. As a result, during a single
round of the PD game it is obviously better to defect, regardless of the opponent’s strategy. If every individual interacts with
all other individuals, cooperators are unable to resist invasion by defectors, whereas under replicator dynamics, evolution
of cooperation takes place in a well-mixed population [2].
Since the pioneering SPD study which investigated how lattices affect the evolution of cooperation [3], the effects

of several types of spatial structures, such as regular random graphs [3], small-world networks [4] and scale-free (SF)
networks [5–7], have been investigated. Santos et al. compared the evolution of cooperation in regular ring graphs with
that for SF networks generated via the mechanisms of growth and preferential attachment. They showed that cooperation
becomes the dominating trait in SF networks [5]. Then various statistical properties of networks have been recognized as
key aspects of appropriately characterizing complex networks, such as cluster coefficients [8], degree correlation [9] and

∗ Corresponding author.
E-mail address: tsukamoto@race.u-tokyo.ac.jp (E. Tsukamoto).

0378-4371/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2009.10.002

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:tsukamoto@race.u-tokyo.ac.jp
http://dx.doi.org/10.1016/j.physa.2009.10.002


578 E. Tsukamoto, S. Shirayama / Physica A 389 (2010) 577–586

community structure [10]. Moreover, interactions among these statistical properties have been investigated recently [11,
12]. As another approach to studying the influence of network structure, the evolution of cooperation for real social networks
has been shown [11,13]. In addition, other studies have considered a model of co-evolution relating the evolution of
cooperation and the network structure [14–16]. After Santos et al. argued for the influence of a SF network, most studies
have adopted a SF network for SPD studies. However, they only considered degree distribution for a particular type of SF
network, and they did not investigate the effect across different SF networks or power exponents. Fu et al. shows the network
which have too bigger degree variance suppress the evolution of cooperation [17]. In addition, there are several different
methods of imitation as in Refs. [5,11,14,18,19] and the differences between these methods are not clear.
In this paper, we investigate the effects of different SF networks generated with various power exponents on SPD.

The power law is dependent on the degree distribution, P(k) ∼ k−γ . In particular, we focus on the normalized degree
variance [14] for characterizing each network. Moreover, we adopt three methods of strategy imitation, the wealthiest
imitation [14], the random select imitation [5] and the roulette select imitation. Our investigation shows that for every
method of imitation, there exists an appropriate value of the variance, at which cooperation is optimal.

2. The model

On networks of N nodes created by the following algorithm, the replicator dynamics is implemented similarly as in
Refs. [5,14]. At first, each individual i occupies a node of the constructed network and has the same probability of choosing
cooperation or defection as an initial strategy. According to the payoffs, R = 1, P = S = 0, T = b (>1), b, which denotes
the temptation of defection is the only parameter, so each individual i (1 ≤ i ≤ N) plays PD games with all its neighbors Vi
and accumulates the resulting payoff πi at each step. Then, all individuals i synchronously update their strategy. They use
threemethods of imitation. (a) The first is the wealthiest imitation discussed in Ref. [14], which is such that each individual i
imitates the strategy of thewealthiest among its neighbors Vi. If an individual i has the highest payoff among the Vi, it retains
its own strategy for the next step. (b) The secondmethod is the random select imitation discussed in Ref. [5]. Each individual
i chooses one of its neighbors at random, say j, and compares their respective payoffs πi and πj. If the neighbor’s payoff is
lower or equal, πi ≥ πj, the individual i retains its strategy. On the contrary, if the neighbor’s payoff is higher, πi ≤ πj, i
imitates j’s strategy with probability (πj − πi)/[b ∗ k>] where k> is the highest degree between i and j. (c) The third is the
roulette select imitation discussed in Ref. [20]. In this method, each individual i chooses one of its neighbor j and imitates
j’s strategy with probability pi(j) = πj/(πi +

∑
j πj), or it retains its strategy with probability pi(i) = πi/(πi +

∑
j πj).

To create different networkswith various power exponents,we adopt the configurationmodel proposed byNewman [21]
which can create a networkwith an arbitrary degree distribution. In order to keep the number of nodes and links of networks
constant, we adopt the following algorithm. First, set the value of the minimum degree as kmin = 1 and assign stubs of
links to N nodes according to the predetermined power law distribution with exponent Γ . If there exist nodes (isolated
nodes) that have no link owing to strict reconstruction of the power law distribution, one stub of the link is added to each
isolated node. These additional stubs affect the power law degree distribution only slightly because the proportion of nodes
of minimum degree is large in the power law degree distribution. Then, to keep the number of links as M (or the average
degree 〈k〉 = 2M/N), add stubs of links to eachnodeuntil the total number of stubs becomes 2M . That is,we change the value
of the minimal degree kmin. In this study, the first number of stubs never exceeds 2M; Γ lies in the range (1.6 ≤ Γ ≤ 2.9).
Lastly, pick stubs in pairs of different nodes at random and connect them to create links unless the link is self-connected or a
link between selected nodes already exists. Repeat this operation until no stub exists. If there are stubs for which we cannot
build a link (typically there is no edge left, and there are seldommore than one or two edges left), we substitute for them by
randomly connecting nodes. Thuswe can obtain networks with constant numbers of nodes and links, closely approximating
a power law distribution.
For characterizing constructed networks, we focus on the normalized degree variance σ 2n = (〈k

2
〉−〈k〉2)/〈k〉 [14], where

〈k〉 is the average degree. An important property of σ 2n is that a random network of a Poisson distribution has σ
2
n ; 1. In

addition, several researchers have used this variable to represent the heterogeneity of complex networks [22,23]. In studies
on the SPD, Zimmermann et al. [14] and Fu et al. [17] used this variable to analyze their results. In this paper, the normalized
degree variance is used to represent the heterogeneity and to compare the results obtained in previous studies.
The normalized degree variance σ 2n obtained from the constructed network is plotted with respect to the power law

exponent Γ of the predetermined distribution in Fig. 1. The relationship between the power law exponent Γ of the
predetermined distribution and the power law exponent γ estimated from the resultant distribution of our algorithm is
shown in Fig. 2. Since the constructed networks by our algorithm does not sufficiently realize the degree distributions
P(k) = ck−γ as shown below, the value of γ does not coincide with Γ .
A typical set of degree distributions for different values of the normalized variance is shown in Fig. 3. The distributions

are approximately scale free. However, for small normalized variances, the distributions in the low degree region do not
follow the power law, and heavy tails appear in the high degree region. In addition, a network characterized by large σ 2n has
several hubs, whereas there are few large hubs in a network of small σ 2n , which is more similar to a homogeneous network.
Herewe remark that the finiteness of the network is crucial in our analysis. The reason is described as follows. Let the degree
distribution P(k) of the constructed network exactly follow P(k) = ck−γ , where c = 1/

∑kmax
k=kmin

k−γ , and kmax denotes the
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