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a b s t r a c t

In this article, we derive the first passage time (FPT) distribution and themean first passage
time (MFPT) of random walks from multiple sources on networks. On the basis of analysis
and simulation, we find that the MFPT drops substantially when particle number increases
at the first stage, and converges to the shortest distance between the sources and the
destination when particle number tends to infinite. Given the fact that a Brownian particle
from a high-degree node often needs a large number of steps to reach an expected low-
degree node, which is the bottleneck for a single randomwalk, we propose amixing search
model to improve the efficiency of search processes by using random walks frommultiple
sources to continue the searches from high-degree nodes to destinations. We compare
our model with the mixing navigation model proposed by Zhou on complex networks
and find that our model converges much faster with lower hardware cost than Zhou’s
model. Moreover, simulations on scale-free networks show that the search efficiency of
our model is much higher than that of a single random walk, and comparable to that of
multiple randomwalkswhich havemuch higher hardware cost than ourmodel. Finally, we
discuss the traffic cost of our model, and propose an absorption strategy for our model to
recover the additional walkers in networks. Simulations indicate that this strategy reduces
the traffic cost of our model effectively.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, network structure anddynamics have attracted tremendous interest fromphysicists [1,2],mainly because
they want to understand and characterize the underlyingmechanisms of complex networks such as the Internet, social net-
works, and biological networks. One of themost important dynamics taking place onnetworks is search or navigation [3–14].
The studies of network search can be traced back to the famousMilgram’s small-world experiment. The results of this exper-
iment revealed that not only do short paths exist between any pair of nodes, but such paths can easily be found using only
local information [2]. However, Kleinberg [3] pointed out that the efficient navigability is a fundamental property of only
some small-world structures. In large-scale networks, there are many paths between any pair of nodes. Whether a node can
find the efficient or even the shortest paths to any other node depends on the network topology, knowledge of the network
topology acquired by the nodes and the search algorithm employed. Without any knowledge on topology, a single random
walk search [4] was proved to be inefficient. The search efficiency can be improved by using some local information, such
as the geographical location of target [3], the degrees of neighboring nodes [5,6], and local betweenness centrality (LBC) [7].
In the extreme case, if all nodes know how to deliver the message along the shortest paths, the highest efficiency can be
achieved. To achieve this, all the nodes in networks should be expensive routers which are able to calculate the best paths
after handling a large amount of external real-time information [8]. In addition, the routers require a lot of storage capac-
ity to store next hops of the best paths [9]. Apparently, it is uneconomical and impractical, especially in huge-size ad hoc
networks. So, it is of great significance and challenge to design efficient network search algorithms.
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Random walks of Brownian particles are often used to describe search processes on networks. Traditionally, much
attention has been focused on parameters such as access time or hitting time, commute time, cover time and so on [15,16].
Recent studies show that random walks on complex networks can reveal a variety of characteristics of the underlying
networks, such as the diameter [28], centrality [18], community structure [17], etc. Random walk has also been exploited
to solve search problem on networks, such as sending message and locating target node [19], tracking moving object [20],
building dynamic routing on networks [21]. Besides, the statistical problems of a single randomwalker have been generated
into multiple random walks gradually [22,23], although some may be very difficult. In this article, we first derive the
distribution of the first passage time (FPT) and themean first passage time (MFPT) of randomwalks frommultiple sources on
networks. After this, we propose amixing search (MS) model based on randomwalks frommultiple sources and implement
our model on complex networks of different topologies. To describe the behavior of our model, we measure the average
search time of the whole network and compare our model with the mixing navigation (MN) model proposed by Zhou [24].
Results demonstrate that ourmodel gets higher efficiencywith lower hardware cost on complex networks.We also compare
our model with single and multiple randomwalks on scale-free networks. Simulations confirm that the search efficiency of
ourmodel is much higher than that of a single randomwalk and comparable to that ofmultiple randomwalks. However, the
hardware cost of our model is much lower than that of multiple random walks. Finally, we present an absorption strategy
for our model to handle the additional walkers in networks, which reduces the traffic cost of our model effectively.
The outline of the article is as follows. In Section 2, we derive the distribution of FPT and MFPT of random walks from

multiple sources on networks. In Section 3, we present the MS model based on the study of part two and implement it on
complex networks of different topological characteristics. We also give the absorption strategy in this part. In Section 4, we
present our conclusions.

2. Random walks frommultiple sources

The random walk of a Brownian particle is a first-order Markov process. On an arbitrary finite network which is
connected, supposing a particle start from node s to node d in t steps, the transition probability Psd(t) is as follows [4]:

Psd(t) =
∑

j1,...,jt−1

Asj1
Ks
·
Aj1j2
Kj1
· · ·
Ajt−1d
Kjt−1

(1)

where Aij are the entries of the adjacent matrix A, and Aij = 1 if there is a link from i to j, otherwise, Aij = 0. Ki is the degree
of node i. The probability transfer matrix of the whole network can be described as follows:

P = K−1A (2)

where K is a diagonal matrix and K = diag(K1, K2, . . . , KN). Then, we suppose there are many particles distributed on k
different nodes at the initial time. The k nodes are labeled 1 through k, 0 < k < N . The number of particles on node i is
ni. At t = 0, all the particles start out walking randomly to the destination labeled d, k < d ≤ N . After some time Td, the
process ends when the first particle arrive at d. Obviously, Td is the FPT which is a random variable. In order to calculate the
distribution of Td, we need to use two other random variables: Xid and Yid(ni).Xid represents the FPT of a single particle from i
to d.Yid(ni) is the passage time of the first arriving particle at d, which is one of the ni particles starting from i simultaneously
and independently at the initial time. In fact, the FPT is equal to the time taken by the first arriving particle during the road,
no matter how the initial distribution of particles is. Assume all the particles walk independently, we can obtain that:

Yid(ni) = min{X1id, X
2
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ni
id } (3)

where Xmid is themth particle starting from i to d. Similarly, Td can be calculated as follows:

Td = min{Y1d(n1), Y2d(n2), . . . , Ykd(nk)}
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Then, we can obtain that:

Prob{Td > t} = Prob{min{X11d, X
2
1d, . . . , X

n1
1d , . . . , X

1
kd, X

2
kd, . . . , X

nk
kd } > t}

=

n1∏
i=1

Prob{X1d > t}
n2∏
i=1

Prob{X2d > t} · · ·
nk∏
i=1

Prob{Xkd > t}. (5)

Due to the same independent walks of particles, Eq. (5) can be simplified as follows:

Prob{Td > t} =
k∏
i=1

(Prob{Xid > t})ni . (6)

Since the process ends upwhen the first arriving particle appears on d, we can treat d as an absorbing state. The new transfer
matrix is as follows:

Q (d) = (P1, . . . , Pd−1, 0, Pd+1 . . . , PN) (7)
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