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a b s t r a c t

Bymeans of a visibility graph, we investigate six important exchange rate series. It is found
that the series convert into scale-free and hierarchically structured networks. The relation-
ship between the scaling exponents of the degree distributions and the Hurst exponents
obeys the analytical prediction for fractal Brownian motions. The visibility graph can be
used to obtain reliable values of Hurst exponents of the series. The characteristics are ex-
plained by using the multifractal structures of the series. The exchange rate of EURO to
Japanese Yen is widely used to evaluate risk and to estimate trends in speculative invest-
ments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of
these two currencies are significantly weak compared with that of the other series.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Time series analysis attracts persistent attention due to its potential use in theory and practice in diverse research fields
[1]. Theories in physics are one of the most important origin’s of the ideas and methods. The concepts in nonlinear physics
have led great achievements in time series analysis, such as the long-range correlations, scale-invariance, chaotic property,
and complexity (see, for instance, Refs. [2–6] and the references therein).
Complexnetwork theory [7] is a newbranch in statistical physics, inwhich complex systems are describedwithnetworks.

The nodes and edges represent the elements and the relationships between them, respectively. The goal is to understand,
in a global way, the impacts of topological structures on dynamics and functions. Hence, a natural question arises, namely,
how can we use the network theory in time series analysis?
Recently, several efforts have been made to bridge time series and complex networks [8–14]. Zhang et al. [8–11]

firstly considered pseudo-periodic time series. For an oscillatory time series, one can extract the cycles denoted with
{C1, C2, . . . , Cm}. Then we canmap each cycle to a node and link the nodes whose corresponding cycles are morphologically
similar (measured quantitatively by phase space distance or correlation coefficient). It is found that noisy periodic signals
generate random networks, while chaotic time series generate networks exhibiting small-world and scale-free features.
What is more, time series generated by different types of continuous dynamics, including periodic, chaotic, and periodic
with noise, have distinctive local patterns.
Alternatively, Lacasa et al. [12,13] proposed the so-called visibility graph, inwhich the successive scalar time series points

are mapped to nodes and each node is connected with all the other nodes covered within its visual line. The constructed
networks inherit several properties of the time series. To cite examples, periodic, random, and fractal series convert into
regular, random and scale-free networks, respectively.

∗ Corresponding author.
E-mail addresses: hjyang@ustc.edu.cn, huijieyangn@eyou.com, phyyh@nus.edu.sg (H. Yang).

0378-4371/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2009.07.016

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:hjyang@ustc.edu.cn
mailto:huijieyangn@eyou.com
mailto:phyyh@nus.edu.sg
http://dx.doi.org/10.1016/j.physa.2009.07.016


4432 Y. Yang et al. / Physica A 388 (2009) 4431–4437

The discussions mainly focus on stationary time series generated with theoretical models. When we try to deal with
real world data, we should answer some important questions, such as what are the non-stationary (trend) effects on the
structural properties of networks, and what can the structural properties of networks tell us about time series.
In the present paper, the visibility graph is used to analyze several exchange rate series. We find that the series convert

into hierarchically structured scale-free networks. The relations between the scaling exponents of the degree distributions
and the Hurst exponents obey the analytical prediction for fractal Brownianmotions. The exchange rate of EURO to Japanese
Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, we find that the
hierarchies of the series for these two currencies are significantly weak compared with that of the other series.

2. Methods and materials

Visibility graph. To keep the description as self-contained as possible, we reviewbriefly the concept of visibility graph [12].
Let us consider a scalar time series, denoted with {yi |i = 1, 2, . . . ,N }, where N is the total number of records. One canmap
the time series points to nodes, and link each pair of nodes if there exists visibility between them. The visibility between
two arbitrary points, ya and yb, refers to that all the points between them fulfills,

yc ≤ yb + (ya − yb) ·
b− c
b− a

. (1)

That is, all the intermediate points do not intersect with the straight line between the two points.
Degree distribution. The constructed networks are measured by using the degree distribution [7]. Degree of a node is

the number of the nodes directly connected with it. Scale-free is a characteristic shared by a large amount of real world
networks. In a scale-free network, the degree distribution obeys a right-skewed power-law, p(k) ∼ k−α . Consequently,
there exist some high-degree nodes acting as hubs, and we cannot find a characteristic degree of the degree-distribution.
Exponential distribution is another important type widely existing in the real world, namely, p(k) ∼ exp(−λk).
Lacasa et al. [13] present an analytical prediction of behaviors of the tail of p(k). According to Eq. (1), the nodes

corresponding to extreme values in the considered series have typically large degrees, and consequently dominate the
behaviors of the tail. For a node corresponding to the extreme value ye, the probability of this node to have degree k is,

ppre(k) ∼ Pfr(k) · r(k), (2)
where Pfr(k) is the occurring probability of ye+k = ye, namely, the first return time distribution. And r(k) is the percentage
of visible nodes between e and e+ k, which can be estimated with the normalized standard deviation, namely,

r(k) ∼
1
k
·

1
N − k+ 1

·

N−k+1∑
e=1

[
e+k−1∑
j=e

(
yj −

〈
yj
〉)2
/k

] 1
2

, (3)

where
〈
yj
〉
is the mean value of the segment, {ye, ye+1, . . . , ye−k+1}. We record the index number s if the line connecting

the s’th and the (s+ 1)’th nodes intersects with the line, y = ye and calculate the interval between each pair of successive
recorded index numbers. Repeat this procedure for the values of ye = ymin+

ymax−ymin
W ·w, (w = 1, 2, . . . ,W ). ymax and ymin

are the maximum and minimum values in the series, respectively. When the repeat timesW is large enough, the function
Pfr(k) can be approximated with the histogram of the calculated intervals.W is chosen to be 500 in the calculations in the
present paper.
For a fractal Brownian motion (FBM) with Hurst exponent H , the predicted degree distribution obeys a power-law,

namely, ppre(k) ∼ k−β ∼ k2H−3. β is the predicted scaling exponent. Accordingly, we can estimate the value of the Hurst
exponent, H = 3−β

2 . Because of the intrinsic non-stationary, long-range dependence and finite length of real world FBM
series, characterizing these series via Hurst exponent requires sophisticated techniques that often yield ambiguous results
(an overview can be found in Ref. [13] and references therein). Visibility graph proves to be a reliable method to estimate
the Hurst exponents of FBMs.
Hierarchy. In a network, the nodesmay cluster into some groups, and the nodes in each group are densely connectedwhile

different groups are connected loosely with few edges. Each group may also contain some small sub-groups. Occurrence at
different scales of this kind of modular structures leads to hierarchy of networks [15,16]. Generally, low-degree nodes form
the densely connected sub-groups, which are connected with each other by high-degree nodes. Clustering coefficient of a
node is defined to be the ratio between the numbers of existing edges and possible edges among its neighbors. In hierarchical
networks, clustering coefficient tends to decrease with the increase of degree. It is found in many real world networks [15–
17] that the relation between clustering coefficient and degree behaves power-law, namely, C∗(k) ∼ k−γ . The exponent γ
is widely used as a criterion to detect hierarchical structures.
Multifractal. To understand the structural characteristics of the visibility graphs, the wavelet transform (WT) [18,19] is

used to detect the scaling properties of the series. The WT of the series {yi |i = 1, 2, . . . ,N } can be calculated asW (s, a) =
1
a

∑N−1
i=1 yi · g

( i−s
a

)
. g is the wavelet and a the given scale. We denote the maximum positions of WT with {s1, s2, . . . , sM}.

For a multifractal series, in the long scale limit the partition function obeys a power-law, i.e.,

Z (a, q) =
sM∑
s=s1

|W (s, a)|q ∝ aτ(q). (4)
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