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a b s t r a c t

Themass distribution of invaded clusters in non-trapping invasion percolation between an
injection site and an extraction site has been studied, in two, three, and four dimensions.
This study is an extension of the recent study focused on two dimensions by Araújo et al.
[A.D. Araújo, T.F. Vasconcelos, A.A. Moreira, L.S. Lucena, J.S. Andrade Jr., Phys. Rev. E 72
(2005) 041404]with respect to higher dimensions. Themass distribution exhibits a power-
law behavior, P(m) ∝ m−α . It has been found that the index α for pe < pc , pc being the
percolation threshold of a regular percolation, appears to be independent of the value of pe
and is also independent of the lattice dimensionality. When pe = pc , α appears to depend
marginally on the lattice dimensionality, and the relation α = τ − 1, τ being the exponent
associated with cluster size distribution of a regular percolation via ns ∝ s−τ , appears to
be valid.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The invasion percolation model was introduced by Wilkinson and Willemsen [1] in order to describe more realistically
in microscopic scale the displacement of fluid–fluid interfaces with respect to the multiphase flow in porous media than
regarding a regular percolation model [2,3]. Examples regarding multiphase flow are the water flow through cracked rocks
and underground oil and gas flow through underground pores. Information on multiphase flow is of great importance in
exploring underground resources, such as petroleum or natural gas, and the exploration of such resources can be efficiently
performed by injecting water or immiscible gas (e.g., carbon dioxide or methane) into an injection well until the injecting
fluid penetrates pores and reaches an extraction well. When a wetting (invading) fluid, such as water, is injected through
porous medium saturated with a non-wetting (defending) fluid, such as oil, the viscous force is dominated by the capillary
force acting on the interface of two fluids. Thus, the capillary force acts as a driving force. This situation can be modeled by
a lattice network, in which each lattice site is initially filled with a defending fluid and the invading fluid invades the least
pressurized (or the largest pore) sites neighboring the invaded sites.
In a regular lattice percolation scenario, each lattice site (bond) is either occupied with a probability p or unoccupied

with a probability 1− p. The two neighboring occupied sites (bonds) are assumed to be connected, and belong to the same
cluster; thus, tuning the occupation probability p, the system undergoes a phase transition from an unpercolating state to a
percolating state at the percolation threshold pc . The universality class is classified by the static critical exponents ν, β , and
γ , associated, respectively, with correlation length, order parameter, and susceptibility, near pc . The spanning length of the
largest cluster, the probability of an arbitrary site belonging to an infinite cluster, and the secondmoment of the cluster size
distribution are considered to be the correlation length, order parameter, and susceptibility, respectively. These exponents
are related to the fractal dimension of the infinite cluster via df = d− β/ν, with d as the underlying lattice dimensionality.
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On the other hand, in an invasion percolation, each nearest-neighbor site with the least amount of pressure is invaded,
and the process continues until the stopping criterion is achieved; thus, no tuning parameter is necessary and the system
evolves into the natural critical state, i.e., into the self-organized criticality [4]. The invasion process begins from a single site
and all invaded sites are connected, forming a single cluster; therefore, the order parameter and the susceptibility are not
defined. The universality of an invasion percolation has been thus clarified by the quantities differing from those of a regular
percolation. The fractal dimensions of a connected network, a backbone, and an elastic backbone were instead measured
[1,5–7]. Various critical indices associated with various characteristic paths, such as the optimal path and the shortest path
between two sites, were also measured in order to clarify the universality class [8,9].
Two variants of invasion percolation, i.e., the trapping invasion percolation (TIP) and the non-trapping invasion

percolation (NTIP), have been studied. The former is relevant to the situation in that both the defending fluid and the invading
fluid are incompressible, while the latter is relevant to the situation in that the defending fluid is infinitely compressible and
the invading fluid is incompressible. In regards to the former case, when the defending fluid is surrounded in a pore by the
invading fluid, the invading fluid cannot invade the pore, whereas in regards to the latter case the invading fluid can invade
all pores, whether or not they are filled with defending fluid. These two models were known to display different critical
behaviors, such as that the fractal dimensions of invaded clusters were known to be different from each other. While the
fractal dimension of the TIP clusters was df = 1.82 on a two-dimensional substrate [5,6], that of NTIP cluster was found to
be close to the fractal dimension of an infinite network of a regular percolation at criticality [1,2,9]. Contrary to this, it was
also reported that the scaling properties of the TIP cluster were non-universal, and its fractal dimension crossed over to the
value of a regular percolation for large coordination numbers [10].
Recently, an invasion percolation model between an injection site and an extraction well, as well as that with multiple

wells were investigated in two dimensions [11,12]. It was found that the fractal dimension of an invaded cluster was similar
to the fractal dimension of an infinite cluster of a regular percolation, regardless of the pressure at the extraction site. On the
other hand, the distribution of masses of an invading fluid was found to exhibit dramatically different behaviors depending
on the pressure of the extraction site. For the pressure of the extraction site pe = 0, it exhibited the power-law behavior
P(m) ∝ m−α with the power α ' 1.39, whereas for pe = pc , pc being the regular percolation threshold, it still exhibited
the power-law behavior but with a different power, α ' 1.01 [11]. The power α for the latter case was conjectured to be
related to the exponent τ , describing the cluster size distribution of a regular percolation as ns ∼ s−τ , via α = τ − 1, with
ns being the number of clusters of size s per site.
In this paper, we studied the NTIP between two sites in regards to two, three, and four dimensions, focusing on ways in

which the power-law behavior regarding the distribution of masses of invaded clusters varies as the lattice dimensionality
increases. Our work is an extension of the recent study in two dimensions by Araújo et al. [11] to higher dimensions. We
measured the mass distribution of invaded clusters. It was found that the exponent α appears to be≈ 1.41 irrespective of
the lattice dimensionality for the case of pe = 0, whereas it varies, depending on the lattice dimensionality for pe = pc .

2. Model and methods

With regard to the d dimensions, the hypercubic lattice of Ld sites was used as a pore site network, whichwas assumed to
be filledwith defending fluids. An injection site and an extraction site, separated by a distance r , were set at the center of the
lattice. Since the previous research [11] determined that the power-law region becomes narrower as the distance r increases,
leaving the power of the distribution of masses unaffected, we choose only two values of r , r = 2 and r = 4, throughout
the work. The random numbers between 0 and 1, representing the pressures (or the pore site sizes), are distributed on the
lattice sites of the system. Beginning from the injection site, the neighboring sites are listed in descending order, from the
highest pressure site to the lowest pressure site. In regards to the next and forthcoming steps, the lowest-pressure site is
invaded and the new sites neighboring the one just invaded are added in the list, therefore, maintaining the order from the
highest pressure to the lowest pressure. This process is continued until the extraction site is invaded, at which time the
process is terminated and the mass of invaded clusters is sampled.
Since the invasion process is begun from the center of the lattice, it might be possible that the invaded clusters quickly

reach the boundary of the finite system before the extraction site is invaded. Whenever this happened, the process was
stopped and the sample was discarded in the earlier studies [11]. This prescription apparently yields a sharp drop in the
largemass region of the distribution due to a lack of data for large clusters, thereby severely reducing the power-law region.
This type of bias is even more significant in regards to higher dimensions because the linear system size will be smaller,
due to computer memory and computing time limitations. In order to reduce such a finite-size effect, we employed periodic
boundary conditions in this study. When an invaded cluster reaches the boundary and the neighboring site out of the given
cell is about to be invaded, the image site on an opposite edge is invaded unless the invaded network wraps the system. This
prescription allows us to sample the data of large masses, but requires a relatively long computing time. In order to avoid
wasting the sampling time for rare events for which almost an entire lattice may be invaded, a cutoff mass is set. When the
mass of invaded network reaches the cutoff mass, the process is stopped and the sample is discarded. This prescription does
not affect the power-law behavior but only limits the power-law region up to the cutoff mass.
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