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a b s t r a c t

Microscopic bouncing balls, i.e., particles confined within a positive one-half-dimensional
gravitational potential, display Bose–Einstein condensation (BEC) not only in the
thermodynamic limit but also in the case of a finite number of particles, and the critical
temperature with a finite number of particles is higher than that in the thermodynamic
limit. This system is different from the one-dimensional harmonic potential one, for which
the standard result indicates that the BEC is not possible unless the number of particles
is finite.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Along with creating the Bose–Einstein statistics for the ideal boson gas, Einstein in 1925 showed that from a certain
temperature on, themolecules condensewithout attractive forces [1], and it was named later as Bose–Einstein condensation
(BEC). Seventy years after the prediction of Einstein, Bose–Einstein condensates formed by atomic gases confined in
harmonic magnetic traps were observed at very low temperatures [2]. Inspired by either the theoretical modeling or
the real experimental setup, theoreticians search in wider domains for the relation between BEC and the form of the
potentials trapping the bosons. Thewell-studied situation is closely related to that of three-dimensional harmonicmagnetic
traps [3–5], where the mark of the transition temperature with a finite number of particles appears lower than that in
the thermodynamic limit [6], and lowering the dimension increases the transition temperature, and therefore is favorable
for BEC [3].
It is well-known that without any external field, the free bosons confined in a box in dimensions fewer than 3 will not

condense. Starting from the one-dimensional gas of particles confined by a power-law potential U(x) ∼ |x|η , studies show
that in the thermodynamic limit it will display BEC only if the potential power η satisfies 0 ≺ η < 2 [7]. In other words, the
standard treatment indicates that the BEC is not possible for a one-dimensional harmonic potential η = 2, even it can be
defined with a finite number of particles [3,7].
Once physical systems are studied on the Earth, the influence of the gravitational field cannot be overlooked. However,

even with the lack of quantitative results, a qualitative analysis was made forty-one years ago [8], showing that in
the presence of the gravitational field, the inhomogeneous boson gas can condense in one and two dimensions. It is
therefore understandable that the gravitational field added into the independent free bosons in a three-dimensional box
can quantitatively affect the critical temperature of BEC [9]. In the present note, we give quantitative results for BEC in a
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one-dimensional half-space decorated with a gravitational field, with emphasis on possible effects resulting from the finite
number of particles.
In Section 2, a semiclassical treatment of the one-dimensional noninteracting bosons in the presence of a gravitational

field is given, which is applicable in the thermodynamic limit. In Section 3, the effect of the finite number of particles is
discussed. This article is closed with a brief conclusion in Section 4.

2. A semiclassical treatment of one-dimensional BEC in a gravitational field

In Bose–Einstein statistics, the average number of particles in an energy eigenstates En is given by the Bose–Einstein
distribution,

Nn =
1

exp((En − µ)/kBT )− 1
, (1)

whereµ is the chemical potential and kB is Boltzmann’s constant. The chemical potentialµ is determined by the constraint
that the total number of particles in the system is N ,

N =
∞∑
n=0

Nn. (2)

The particles of massM are confined by a gravitational potential that is given by

U(x) =
{
Mgx, (x > 0)
∞, (x ≤ 0). (3)

So, the particle is actually a classical bouncing ball that moves in a positive half-space in one dimension. For the case where
the temperature kBT is much higher than that for any two adjoining quantum levels, i.e., kBT � ε2 − ε1, the system can be
well described as a continuum of energy levels plus a separate ground state. The density of states is then given by

ρ(ε) =
1
h

∫
dxdpδ(H − ε), (4)

where H = p2/(2M)+ U(x) is the Hamiltonian for the particle. Then Eq. (4) becomes

ρ(ε) =

√
2M
h

∫ l(ε)

0

dx
√
ε − U(x)

=
2
hg

√
2
M
√
ε, (5)

where l(ε) = ε/(Mg) is the maximum height for classical particles with energy ε. The total number of particles satisfies,
from Eq. (2),

N = N0 +
∫
∞

0

ρ(ε)dε
exp((ε − µ)/kBT )− 1

, (6)

where N0 is the number of particles in the ground state ε = 0. For a given temperature, the maximum number of particles
accommodated in excited states is reached when µ = 0. Then the critical temperature TC can be determined using the
following equation:

N =
∫
∞

0

ρ(ε)dε
exp(ε/kBTC )− 1

, (7)

which can be rewritten as

TC =

(
MghN

2.612k3/2B
√
2πM

)2/3
= 1.226N2/3

(
Mg2 h̄2

2

)1/3 1
kB
. (8)

To see quantitatively at what number N the molecules start to condense, we obtain some numerical results. For an air
molecule of average mass M = 4.82 ∗ 10−26 kg, with the requirement that TC = 300 K, BEC starts once N ≥ 1.28 ∗ 1015,
while for a hydrogen gas molecule of mass M = 3.35 ∗ 10−27kg, N ≥ 4.84 ∗ 1015. At the extreme, N(TC ) = 1 gives from
Eq. (7) TC = 25.5 nK and 10.5 nK for air and hydrogen gas respectively, and no molecule can be excited as long as T ≺ TC .
These numerical results show that the continuum treatment is applicable once the critical temperature is much higher than
10 nK, the temperature corresponding to the energy difference between the ground state and the first excited state. In other
words, at temperature lower than 10 nK, a few particles are sufficient for condensation. So, the finite number effects can
never be overlooked at low temperature. Moreover, we will see in the next section an interesting behaviour: the critical
temperature is higher than that in the thermodynamic limit.
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